在嵌入式系统开发领域,STM32F1系列微控制器因其高性能和丰富功能被广泛应用于各种产品设计中。本实验聚焦于如何使用STM32F1系列中的FSMC(Flexible Static Memory Controller)外设,来驱动LCD屏幕,以实现图形显示。实验的目标芯片包括ST7796S、ST7789V和ILI9341,这些均为常用的液晶显示控制器。本实验的主要内容涵盖显示测试和刷屏帧率计算,并通过FSMC+DMA(Direct Memory Access)方式对比刷屏速度,评估不同驱动方式的性能。 FSMC是一种灵活的静态存储控制器,它允许STM32F1系列微控制器直接与外部存储设备进行通信。FSMC支持多种类型的存储器,如SRAM、PSRAM、NOR Flash和LCD显示器等。在本实验中,FSMC被用来作为与LCD屏幕通信的接口,它负责发送控制命令和图像数据到LCD屏幕。 ST7796S、ST7789V和ILI9341都是常用的TFT液晶显示控制器,它们具有相似的接口和工作原理,因此可以在本实验中兼容使用。ST7796S和ST7789V是专为小尺寸屏幕设计的控制器,常用于便携设备;而ILI9341则支持更大尺寸的显示屏,具有更高的分辨率和颜色显示能力。将这些控制器作为实验对象,可以让我们学习如何通过FSMC来驱动不同尺寸和分辨率的屏幕。 实验中,显示测试是不可或缺的一个环节,它涉及到基本图形的显示,如线条、矩形、圆和基本字符等。这不仅帮助验证FSMC与LCD之间的通信是否正常,也为后续的帧率测试提供了测试图案。 帧率测试是在显示测试的基础上进行的,目的是计算屏幕刷新的速度。帧率通常以每秒刷新的帧数(FPS)来衡量,是衡量显示屏性能的重要指标之一。在此实验中,通过FSMC驱动LCD屏幕,测量不使用DMA和使用DMA两种情况下屏幕刷新的帧率,以了解DMA在提高数据传输效率方面的优势。 DMA是一种允许外设直接访问内存的技术,无需CPU介入。在使用FSMC进行大量数据传输到LCD屏幕时,如果使用DMA,则可以大幅度减轻CPU的负担,提高数据传输的效率,从而提升屏幕的刷新速度。在实验中,通过对比使用DMA和不使用DMA两种情况下的帧率,可以看到显著的性能差异。 整个实验的关键点在于正确配置STM32F1的FSMC外设和定时器,以及DMA控制器。FSMC需要被配置为支持所连接的LCD控制器的接口类型和时序参数,定时器则用于产生精确的时间基准,而DMA则需要正确设置以完成内存和外设之间的高效数据传输。 在实验的根据测试结果得出FSMC+DMA刷屏速度相较于单独使用FSMC的性能提升,并对不同LCD控制器的性能进行评估,从而为后续的项目选择合适的LCD控制器和驱动方式提供数据支持。 本实验是一项深入探究STM32F1系列微控制器在图形显示领域应用的实践。通过FSMC的使用,学习如何实现与多种LCD控制器的通信,并通过实验对比DMA与非DMA模式下屏幕刷新速度的差异,理解DMA技术在提高数据传输效率方面的优势。这些知识和技能不仅能够增强工程师对STM32F1系列微控制器的理解,也为未来在嵌入式系统设计中遇到的图形显示需求提供了实际的解决方案。
2025-08-19 11:32:42 15.77MB 工程代码 STM32F1 FSMC DMA
1
STM32CUBEMX请自行安装:https://blog.csdn.net/as480133937/article/details/98885316 编程语言是C语言,需要有一定的C语言基础。 文件包含 Keil.STM32F1xx_DFP.1.0.5 Keil.STM32G4xx_DFP.1.1.1 keygen_new2032 MDK524a.exe 安装说明必读: 一、安装软件: 1.在某盘的根目录下新建文件夹,注意文件夹名不能有中文!双击安装MDK524a.exe 2.任意输入,一路NEXT. 二、安装器件支持包: 根据需要选择支持包,双击Keil.STM32F1xx_DFP.1.0.5.pack,默认路径,点击NEXT。 三、软件注册 先关闭软件,在Keil5图标上右键,选择以管理员身份运行 点击File-License Management,复制CID 打开安装包,双击keygen_new2032.exe,,按下图1234顺序进行:粘贴CID,选择ARM,点击generate生成注册码,复制它,点击Exit。 再回到软件License Management界面……
2025-08-02 11:05:17 795.49MB stm32 开发工具
1
STM32F1系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计。在"STM32F1高低滤波特征提取"这个主题中,我们主要关注的是如何在STM32F1微控制器上实现信号处理中的高低通滤波器功能,以及如何从处理后的数据中提取关键特征,以供后续分析或分类使用。 我们要理解高低通滤波器的作用。高通滤波器允许高频信号通过,而抑制低频信号;低通滤波器则相反,它允许低频信号通过,抑制高频噪声。在许多应用中,如声音识别、图像处理或传感器数据分析,这两种滤波器是预处理原始数据的关键步骤,可以去除噪声并突出重要信号。 在STM32F1上实现滤波器,开发者通常会利用其内置的浮点运算单元(如果有的话)或者使用定点运算来提高效率。滤波器的设计可以基于不同的算法,如巴特沃兹滤波器、切比雪夫滤波器或 Butterworth 滤波器。这些滤波器的系数可以通过离线计算得出,并存储在STM32的Flash或RAM中。 高低通滤波的实现通常涉及以下步骤: 1. 数据采集:通过ADC(模拟数字转换器)将模拟信号转换为数字信号。 2. 滤波算法:根据所选滤波器类型,使用数字滤波算法对数字信号进行处理。 3. 滤波器更新:根据实时输入数据更新滤波器状态。 4. 特征提取:从滤波后的信号中提取关键特征,如峰值、频率、能量等。 特征提取是机器学习和数据分析中的核心步骤。它包括选择、变换和组合原始数据,以创建新特征,这些特征更能反映数据的本质属性,有利于后续的分类或预测任务。例如,在声音分析中,可能需要提取声压级、频率谱、梅尔频率倒谱系数(MFCC)等特征;在传感器数据分析中,可能会关注数据的趋势、周期性或异常值。 在STM32F1上实现这一过程时,开发者需要考虑微控制器的资源限制,如计算能力、内存大小等。这可能意味着选择更高效的滤波算法,或者在特征提取阶段采取更简单的统计方法。 "STM32F1高低滤波特征提取"是一个涉及嵌入式系统编程、信号处理和特征工程的综合性课题。它要求开发者具备扎实的数字信号处理理论知识,熟练掌握C语言编程,以及一定的硬件接口操作经验。通过这样的实践,我们可以实现一个能够在嵌入式设备上运行的高效、可靠的信号处理系统,为后续的数据分析和应用提供高质量的输入数据。
2025-07-31 18:18:35 26.61MB stm32 特征提取
1
STM32F1系列是意法半导体(STMicroelectronics)推出的高性能、低功耗的微控制器,广泛应用于各种嵌入式系统设计。W25Qxx系列是Winbond(华邦电子)生产的一系列SPI接口的闪存芯片,用于存储程序代码、数据和其他非易失性信息。本驱动程序主要针对STM32F1与W25Qxx之间的通信,旨在简化用户在项目开发中的集成过程,提高开发效率。 驱动程序的核心部分包括以下关键知识点: 1. **SPI通信协议**:STM32F1与W25Qxx之间的通信是通过SPI(Serial Peripheral Interface)总线进行的。SPI是一种同步串行接口,通常由主设备(如STM32F1)控制时钟和数据传输方向。W25Qxx作为从设备,根据主设备发送的命令进行响应。 2. **W25Qxx命令集**:W25Qxx系列闪存支持一系列标准和特定的指令,如读取数据、写入数据、擦除扇区等。这些命令在驱动程序中被封装成函数,用户可以通过调用这些函数来操作闪存。 - **读取数据**:例如,`Read_Data`命令用于读取已存储的数据。 - **写入数据**:`Page_Program`命令用于写入单个页的数据,`Quad_Page_Program`则支持快速四线模式写入。 - **擦除操作**:`Sector_Erase`擦除一个扇区,`Block_Erase`擦除一个块,而`Chip_Erase`则会擦除整个芯片。 3. **配置文件w25qxxconfig.h**:这个头文件可能包含关于SPI接口配置的常量和宏定义,如SPI时钟频率、CS(Chip Select)信号的极性、数据传输模式等。用户可以根据具体硬件配置进行修改。 4. **w25qxx.c和w25qxx.h**:这两个文件构成了驱动程序的主要实现。`.c`文件包含了实际的函数实现,如初始化SPI接口、发送命令、读写数据等。`.h`文件则是头文件,定义了对外的函数接口和结构体,方便其他模块调用。 5. **初始化过程**:在项目启动时,必须先初始化STM32F1的SPI接口和相关的GPIO引脚。这通常涉及到设置GPIO的复用功能、SPI时钟使能、配置SPI工作模式等。 6. **错误处理**:驱动程序通常会包含错误检查机制,以确保命令正确执行。例如,写入操作后可能会通过读取状态寄存器来确认是否成功。 7. **事务管理**:为了保证数据的完整性和一致性,驱动程序需要处理事务边界,比如在写入或擦除操作期间,防止其他中断或任务干扰。 8. **中断驱动**:在某些高效率应用中,可能使用中断驱动的SPI通信,以便在传输完成时及时响应。 通过以上知识点的掌握和理解,开发者可以有效地利用STM32F1的W25Qxx驱动程序来实现与外部闪存的交互,实现数据的存储和读取,从而构建各种嵌入式系统应用。例如,它可以用于存储用户设置、运行日志或者程序更新。
2025-04-12 23:05:56 8KB stm32
1
基于Keil软件与C语言开发,利用OV7725照相机与STM32F1识别车牌
2025-03-26 21:29:41 3.8MB stm32 源码软件 arm 嵌入式硬件
1
演示是在STM32F103CBT6上构建的,但是您可以用STM32CubeMX移植它们。 设置I0I1: I0 ->低 I1 ->高 硬件连接: SCK - > PA5 SDK- > PA6 MOSI - > PA7 NSS - > PA4 PA9 - > RX PA10 - > TX 摘录:pn 532-lib \ examples \ STM 32 \ STM 32.7 z 使用Keil V5打开项目MDK-ARM\pn532_stm32.uvprojx 构建项目并下载到您的STM32板上。
2024-11-04 20:21:20 3.93MB STM32 PN532
1
AD7794 驱动,单片机是STM32 ,四个IO口模拟SPI,任意IO都可以驱动
2024-10-09 13:43:27 3KB
1
STM32Cube_FW_F1_V1.8.0 是一款针对STM32F1系列微控制器的固件库,由意法半导体(STMicroelectronics)发布。STM32Cube是ST提供的一整套软件解决方案,它包括了HAL(硬件抽象层)和LL(低层)驱动库、中间件、示例代码以及配置工具。这个版本V1.8.0是固件库的一个更新,旨在提高性能、兼容性和功能。 STM32F1系列是STM32产品线中的基础系列,基于ARM Cortex-M3内核,具有广泛的引脚数、存储器大小和封装选项,适用于各种嵌入式应用,如工业控制、消费电子和物联网设备。STM32CubeFW_F1为开发者提供了丰富的驱动程序,使得开发者能够更快速地进行原型开发和项目实施。 HAL驱动库是STM32CubeFW_F1的重要组成部分,它提供了一种与硬件无关的编程接口,简化了驱动程序的编写过程,让开发者可以专注于应用程序的逻辑,而不是底层硬件细节。HAL库包含了大量的函数,覆盖了STM32F1的所有外设,如GPIO、定时器、串口、ADC、DMA等,且这些函数都有清晰的命名规则和一致的调用方式。 LL驱动库则是为追求更高性能和更小代码体积的开发者设计的。它比HAL库更接近底层,但仍然保持了易于使用的特性。LL库提供了直接的外设寄存器操作,适合对性能有严苛要求的应用。 STM32CubeMX是STM32Cube系列的一部分,是一个配置工具,允许用户通过图形界面配置STM32微控制器的参数,如时钟树、GPIO引脚分配、中断设置等。生成的配置文件可以直接导入到IDE中,自动生成初始化代码,极大地简化了项目启动阶段的工作。 在STM32Cube_FW_F1_V1.8.0中,可能包含了以下更新: 1. **错误修复**:修复了之前版本中已知的bug,确保库的稳定性和可靠性。 2. **新功能添加**:可能增加了对某些新特性的支持,如新的外设驱动或通信协议。 3. **性能优化**:可能对某些函数进行了优化,提高了执行效率。 4. **兼容性改进**:可能增强了对不同STM32F1系列器件的兼容性。 使用STM32Cube_FW_F1_V1.8.0时,开发者需要按照以下步骤操作: 1. **安装STM32CubeMX**:首先确保安装了最新版的STM32CubeMX,以便配置和生成项目初始代码。 2. **打开STM32CubeMX**:在工具中选择目标STM32F1系列芯片,然后配置所需的外设和参数。 3. **生成代码**:完成配置后,生成IAR、Keil或GCC等IDE的初始化代码。 4. **导入代码**:将生成的代码导入到相应的IDE中,进行后续的开发工作。 5. **利用HAL/LL库**:根据需求选择使用HAL或LL库,编写应用层代码。 6. **编译与调试**:编译程序并使用仿真器或实际硬件进行调试。 STM32Cube_FW_F1_V1.8.0是STM32F1系列开发者的重要资源,它提供了全面的驱动支持和便捷的配置工具,帮助开发者高效地进行嵌入式系统开发。
2024-10-08 09:42:56 95.71MB STM32Cube_FW_F1_ STM32F1 CubeMX
1
BLDC无刷直流电机和PMSM永磁同步电机 基于stm32F1的有传感器和无传感驱动 直流无刷电机有传感器和无传感驱动程序, 无传感的实现是基于反电动势过零点实现的,有传感是霍尔实现。 永磁同步电机有感无感程序,有感为霍尔FOC和编码器方式, 无感为换滑模观测器方式。 有原理图和文档 可供学习参考 程序有详细注释。
2024-07-20 18:17:55 449KB stm32
1
STM32F1系列单片机是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计。在这些应用中,快速傅里叶变换(FFT)是一项重要的信号处理技术,常用于频谱分析、滤波器设计、通信系统等。本文将详细介绍如何在STM32F1单片机上实现精度较高的FFT,并探讨相关知识点。 FFT是一种计算复数序列离散傅里叶变换(DFT)的有效算法,其时间复杂度远低于直接计算DFT。在嵌入式系统中,通常使用库函数或者自编译代码来实现FFT,以满足实时性和资源限制的要求。 STM32F1系列单片机具有丰富的片上资源,包括浮点运算单元(如果选型支持),这对于实施数值计算,如FFT,非常有利。然而,由于Cortex-M3内核不包含硬件浮点支持,因此在STM32F1上实现FFT时,通常需要使用定点运算或软件模拟浮点运算。 实现FFT的方法有多种,例如Bit-reversal、Cooley-Tukey等。Cooley-Tukey是最常用的,它将大尺寸的DFT分解为多个小尺寸的DFT,通过蝶形结构(Butterfly)进行计算。这种分解方式可以显著降低计算量,提高效率。 在STM32F1单片机上实现FFT,需要考虑以下关键点: 1. **数据存储**:由于FFT涉及到大量的复数运算,需要合理安排内存以存储输入序列和中间结果。STM32F1的SRAM可作为存储空间,但需要优化布局以减少访问延迟。 2. **算法优化**:针对有限的硬件资源,可能需要对原始Cooley-Tukey算法进行优化,例如使用固定点运算代替浮点运算,或者采用分治策略,对不同大小的FFT选择不同的算法。 3. **计算精度**:在定点运算中,要确保足够的位宽以保持精度,同时避免溢出。这可能需要进行位扩展、舍入和饱和运算。 4. **实时性**:根据应用需求,可能需要在固定时间内完成FFT计算。这要求合理安排任务调度,避免处理器负载过重。 5. **库函数选择**:STM32生态系统中有许多开源的FFT库,如CMSIS-DSP库,提供了预优化的FFT函数,可以直接在STM32F1上使用。这些库已经考虑了上述的优化点,可以减少开发工作。 6. **调试与测试**:实际应用中,需要对FFT结果进行验证,确保精度和性能满足需求。这可能需要配合示波器、逻辑分析仪等工具进行硬件调试。 7. **功耗与效率**:在满足功能需求的同时,也要注意功耗和执行效率。可以通过调整算法参数、优化代码结构等方式来改善。 总结来说,在STM32F1单片机上实现精度较高的FFT,不仅需要理解FFT的基本原理和算法,还需要掌握微控制器的特性以及嵌入式系统的开发技巧。这是一项既需要理论知识,又需要实践经验的任务。通过精心设计和不断优化,可以在有限的资源条件下,实现高效、高精度的FFT计算。
2024-07-20 14:26:52 8.29MB stm32
1