1. 数据文件 train.csv 和 test.csv 包含手绘数字的灰度图像,从0到9 2.train.csv 有 label, test.csv 没有 3.每幅图像高28像素,宽28像素,总共784像素 4.每个像素都有一个与之关联的像素值,表示该像素的亮度或暗度,数字越大表示越暗 5.该像素值是0到255之间的整数,包括0和255
2024-08-13 19:43:04 15.25MB 数据集 手写数字识别 python 深度学习
1
# Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码 1. 使用Pytorch定义ReNet50网络模型; 2. 使用Pytorch加载MNIST数据集,首次运行自动下载; 3. 实现训练MNIST手写数字图像分类,训练过程显示loss数值; 4. 训练完成后保存pth模型权重文件; 5. 在测试集上测试训练后模型的准确率。
2024-07-02 13:31:41 83.7MB resnet pytorch mnist 卷积神经网络
机器学习多层感知器实践完整源代码,MLP识别MNIST手写数字数据集(Pytorch)
2024-03-29 16:35:48 22.52MB pytorch 数据集 MNIST 机器学习
1
基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作
2024-01-12 15:26:14 3.54MB 课程设计 源码 python
用PyTorch实现MNIST手写数字识别(整套流程,附对应源码文件)简单小例子 环境配置 在开始之前,我们需要进行一些环境配置,包括安装PyTorch、numpy和matplotlib等必要的Python库。 安装Anaconda 我们可以从官网下载适合自己系统的Anaconda安装包,安装时需要勾选添加环境变量选项。 创建环境 在Anaconda Prompt中输入以下命令: conda create --name pytorch_env python=3.8 该命令将创建一个名为pytorch_env的环境,并使用Python 3.8版本。
2023-04-07 21:25:47 6KB pytorch pytorch 软件/插件
1
MNIST is provided by NYU, Google Labs and Microsoft Research.本数据集由纽约大学、谷歌实验室和微软研究所提供。 mnist_t10k-images-idx3-ubyte.gz mnist_t10k-labels-idx1-ubyte.gz mnist_train-labels-idx1-ubyte.gz mnist_train-images-idx3-ubyte.gz
2023-03-03 20:25:22 11.06MB 数据集
1
mnist手写数字数据集,可作为各种机器学习算法的训练样本,四个包分别为训练样本,训练样本标签,测试样本,测试样本标签。至于如何读取网上可以搜到相关代码,这里就不再提供。
2023-01-14 16:43:03 11.06MB 手写数字样本
1
mnist手写数字识别的代码实例,内容精简,适合初学者
2023-01-02 20:27:39 110KB tensorflow2.0 mnist手写识别
1
matlab集成c代码 现当今机器学习/深度学习技术在某些具体垂直领域已被大量广泛应用到现实世界中,已经不再像前几年那么“火热”,与之对应的各类深度学习框架也是“百花齐放,百家争鸣”,框架终究只是个工具,不过简化了从“零”开始复杂繁琐的工作,让很多普通人都可以快速入门。本博客不单纯完成一个任务,也不涉及过多理论推导,而是真正体会到算法工作一步步原理,逐步实现,岂不乐乎? 以经典的识别为例,逐步一步步实现通用的深度学习网络模型架构,不调用任何第三方库和框架,使用matlab进行快速搭建、训练和测试。程序中所涉及的理论知识及使用的变量名严格按照、 这两篇博客的符号和公式进行。MNIST手写数字包含60000张训练图片,10000张测试图片,图片大小为28×28,灰度图像,给出的是四个二进制存储的文件,分别为训练和测试的数据集和标签文件。假设读者已经明白所给链接博客的理论知识(不清楚可以参考更多文后的文献和程序代码中给的链接),我们接下来进行下面的具体实现。 网络架构设计 考虑到网络简单和易用性,根据MNIST数据集特点,设计了四层网络层,分别为conv+relu+meanPool、conv
2022-11-30 16:43:36 3.02MB 系统开源
1
说在前头 本文是使用BP神经网络中的softmax回归模型实现MNIST手写数字识别,实际上能实现MNIST手写数字识别的神经网络还有CNN(卷积神经网络),下一篇可能会写。 Tensorflow是个什么东西 Tensorflow是一个采用 数据流图,用于数值计算的开源软件库。节点在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组,即张量(Tensor)。 数据流图用“结点”和“线”的有向图来描述数学计算。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“
2022-11-29 16:01:17 169KB ens fl flow
1