基于k-means算法实现商品的聚类研究.pdf
2024-06-27 10:53:30 2.36MB
1
针对海量数据背景下K-means聚类结果不稳定和收敛速度较慢的问题,提出了基于MapReduce框架下的K-means改进算法。首先,为了能获得K-means聚类的初始簇数,利用凝聚层次聚类法对数据集进行聚类,并用轮廓系数对聚类结果进行初步评价,将获得数据集的簇数作为K-means算法的初始簇中心进行聚类;其次,为了能适应于海量数据的聚类挖掘,将改进的K-means算法部署在MapReduce框架上进行运算。实验结果表明,在单机性能上,该方法具有较高的准确率和召回率,同时也具有较强的聚类稳定性;在集群性能上,也具有较好的加速比和运行速度。
1
K均值聚类即K-Means算法详解PPT
2024-04-23 17:44:06 2.06MB 聚类 kmeans
1
基于K-means算法的光伏曲线聚类研究 关键词:k-means 光伏聚类 聚类 参考文档:《基于改进 K-means 聚类的风光发电场景划分》仅部分参考 仿真平台:MATLAB平台 主要内容:代码主要做的是一个光伏曲线聚类的模型,采用的是较为基础的K-means算法,经过matlab求解后,代码可以直接输出光伏原始数据集、聚类后的数据集,各类曲线的数量以及各类曲线的概率,数据显示结果非常清晰,而且求解的效果更好,店主已经对代码进行了深入的加工和处理,出图效果非常好 标题:改进 K-means 算法在光伏曲线聚类研究中的应用 关键词:K-means 算法、光伏聚类、数据分析、MATLAB平台 参考文档:《基于改进 K-means 聚类的风光发电场景划分》(部分参考) 简介: 本研究聚焦于光伏曲线聚类的模型,采用了改进后的 K-means 算法,以提高聚类的准确性。我们选择了MATLAB平台作为仿真平台,并基于该平台进行实验和数据处理。通过运用改进后的算法,我们的代码能直接输出光伏原始数据集和聚类后的数据集,同时提供各类曲线的数量和概率。结果显示数据清晰可见,求解效果更佳
2024-04-11 09:40:42 1.26MB kmeans matlab 聚类
1
针对K-means算法因随机选取聚类中心而易造成聚类结果不稳定的问题,提出PCA-KDKM算法。该算法使用主成分分析法对数据集的属性降维,提取主属性;利用k′dist曲线自动获取k值;计算平缓曲线上所含数据对象的均值并选取其中一值,作为首个初始聚类中心;利用基于密度和最大最小距离的算法思想进行聚类;结合类间距离和类内聚类提出聚类质量评价函数。将该算法与K-means、KNE-KM、QMC-KM、CFSFDP-KM在UCI数据集上进行聚类比较,结果表明该算法聚类结果稳定,聚类准确率高。将PCA-KDKM算法应用在微博舆情分析中,抓取不同类别的数万条数据进行聚类分析。实验结果表明,PCA-KDKM算法在微博舆情分析中有更高的准确性和稳定性,有利于及时发现热点舆情。
2024-01-11 11:38:00 437KB K-means算法 聚类 质量评价函数
1
针对私人微博内容进行聚类研究,结合私人微博的内容和结构特点提出了基于K-means的改进聚类算法。通过添加引用和评论内容丰富了文本内容,降低了短文本矩阵向量严重稀疏性带来的聚类算法准确性降低的影响;通过甄别“微话题”内容和改进相似度的计算,找到初始化类别并进行初步计算得到合适的类别数目和初始中心点,解决了K-means算法中聚类数目K需人工指定和初始中心点选取随机性的问题。实验结果表明,改进后的算法不仅可以自适应地得到K值,较普通的K-means算法在聚类的准确率上有所提高。
2023-04-01 22:52:14 306KB k-means算法
1
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。
2023-02-10 03:10:05 932KB 自然科学 论文
1
基于Hadoop的K-Means聚类算法优化与实现,陈萍,何健伟,本文针对传统K-Means聚类算法不适合海量大数据挖掘,并且对异常离群点数据非常敏感,结合Hadoop云计算平台以及MapReduce并行编程框架,��
2023-01-15 11:32:23 361KB K-Means算法;大数据;Hadoop;并行;
1
kmeans 分析matlab代码K均值聚类 这是K-means算法在MATLAB和Python中的简单实现 K-means 聚类是一种矢量量化方法,最初来自信号处理,在数据挖掘中流行用于聚类分析。 k-means聚类旨在将n个观测值划分为k个簇,其中每个观测值都属于具有最近均值的簇,作为簇的原型。 这导致将数据空间划分为 Voronoi 单元。 该代码实现了 K-means 算法并在一个简单的 2D 数据集上对其进行了测试。 例子 在这个例子中,我们首先从三个正态分布生成一个点数据集并标记数据集。 这个带有正确标签的数据集是我们的真实值。 然后我们重新调整标签并为新数据集运行 k-means 算法。 该算法正确地对数据集进行聚类,并估计聚类的中心。 在最后一步,我们将我们的结果与 Mathworks 实现的 k-means 的结果进行比较。 结果 我在我的机器上得到的结果如下: iteration: 1, error: 1.8122, mu1: [-0.2165 4.0360], mu2: [4.2571 0.0152], mu3: [-1.1291 -3.0925] iterati
2023-01-12 08:52:42 86KB 系统开源
1
数学建模有关的算法代码,MATLAB的基本实现,智能算法k-means,聚类算法的代码实例,通过了解基本原理知道分类方法,通过随机生成数据来模拟,实现基本的聚类情况,可在原有代码基础上改进。
2023-01-05 00:57:27 2KB 机器学习 数学建模 分类 MATLAB
1