内容概要:本文详细介绍了基于FPGA的FOC(磁场定向控制)电流环实现,涵盖PI控制器和SVPWM算法的具体实现。首先,整体架构由ADC采样、PI控制器、SVPWM生成组成,通过Verilog语言编写,实现了高效的电流控制。其次,PI控制器负责电流偏差的比例和积分运算,确保精确调节电机电流。SVPWM算法则将PI控制器输出转换为逆变器的开关信号,采用二电平算法并通过查表法优化资源占用。此外,文章还讨论了ADC采样(AD7928)、位置反馈(AS5600)和串口通信的硬件接口设计,提供了Simulink模型和RTL图辅助理解和验证系统性能。 适合人群:具备一定FPGA开发经验,熟悉Verilog编程,从事电机控制系统设计的研发人员。 使用场景及目标:适用于无刷直流电机(BLDC)和永磁同步电机(PMSM)的高精度控制应用,旨在提高电机控制效率和响应速度。通过学习本文,读者可以掌握基于FPGA的FOC电流环实现方法,优化电机控制系统的性能。 其他说明:文中提供的代码和模型均为手动编写,确保了代码的可理解性和可维护性。实测表明,该方案能在20kHz中断频率下实现快速响应,适用于1kW级别伺服电机的控制。
2025-12-20 23:27:50 427KB FPGA Verilog SVPWM ADC采样
1
内容概要:本文详细介绍了基于FPGA的频谱仪设计方案,涵盖了从ADC采样、FFT处理到显示控制的全过程。作者通过实际项目经验,分享了多个关键技术点及其解决方案,如状态机设计、双沿采样、CORDIC算法应用、资源优化技巧以及调试方法。文中不仅提供了具体的Verilog代码片段,还讨论了常见的陷阱和优化建议,帮助读者深入理解每个环节的工作原理和技术挑战。 适合人群:具有一定FPGA开发经验和数字信号处理基础知识的研发人员,尤其是对频谱仪设计感兴趣的工程师。 使用场景及目标:适用于希望深入了解FPGA在频谱仪设计中的应用,掌握从硬件逻辑设计到软件调试全流程的人群。目标是通过实例学习,提高对FPGA和数字信号处理的理解,能够独立完成类似项目的开发。 其他说明:文章强调了实际项目中可能遇到的具体问题及解决方案,如时序控制、资源优化、信号完整性等,为读者提供宝贵的实践经验。同时,附带的代码片段和调试技巧有助于快速上手并避免常见错误。
2025-10-15 18:42:01 1.24MB
1
内容概要:本文详细介绍了基于STM32F103的4-20mA采集电路的设计与实现,涵盖硬件和软件两大部分。硬件方面,重点讲解了电流转电压、隔离电路和RS485接口三大模块,特别是采用TI的INA196电流检测芯片进行电流转换,确保工业环境下的稳定性。软件部分则提供了完整的源码,包括ADC采样代码和RS485通信代码,特别强调了DMA技术和滑动滤波的应用,以提高数据采集的准确性和抗干扰能力。此外,还提到了一些实际应用中的注意事项,如终端电阻的设置和ADC基准电压的选择。 适合人群:对嵌入式系统开发有一定基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要将传感器电流信号转换为数字信号并通过RS485传输到上位机的场合。主要目标是帮助工程师理解和掌握4-20mA采集电路的设计方法及其在工业环境中的应用。 其他说明:文中提供的完整原理图、PCB源文件和源码,使得读者可以快速复现并应用于实际项目中。同时,文中提到的实际测试经验和优化技巧也非常有价值。
2025-10-14 11:08:58 1.94MB
1
内容概要:本文针对基于STM32F407的工业控制系统中DMA传输异常的问题进行了详细分析并提出了优化方案。问题表现为采样数据随机跳变、DMA传输中断偶发性失效、系统响应变慢甚至触发硬件故障中断。经过初步分析、问题复现与调试,最终确定问题主要出现在外部中断触发频繁、系统负载较高时DMA传输完成标志未及时清除以及内存访问模式不合理导致总线竞争。为解决这些问题,文章提出了一系列优化措施,包括调整DMA配置(如启用FIFO、提高优先级、使用突发传输)、改进中断处理机制(如完善错误处理、确保DMA传输完全停止再处理数据)、优化数据处理(如添加数据有效性检查、系统重新初始化机制)等。优化后,系统稳定性显著提升,连续运行30天无数据异常,DMA传输错误率降低99%,系统响应时间和资源占用也得到了有效改善。 使用场景及目标:①解决STM32项目中DMA传输不稳定、数据异常等问题;②提高系统的稳定性和性能;③掌握DMA配置优化、中断处理改进及数据处理优化的具体方法。
2025-07-04 15:49:03 58KB 嵌入式开发 DMA传输 STM32 ADC采样
1
**正文** 在嵌入式系统设计中,ADC(Analog-to-Digital Converter,模拟到数字转换器)是至关重要的组成部分,它将连续的模拟信号转换为离散的数字信号,以便于数字系统处理。ADS8688是一款高精度、低噪声的8通道Σ-Δ型ADC,适用于各种工业应用,如数据采集系统、传感器接口和医疗设备等。本项目重点讨论如何通过模拟SPI(Serial Peripheral Interface,串行外设接口)协议读取ADS8688的采样值。 **ADS8688简介** ADS8688是一款8位、8通道ADC,具有内置采样保持器,可以同时对多个模拟输入进行采样。其工作原理基于Σ-Δ调制技术,提供高分辨率和低噪声性能。该器件支持多种输入范围,并具有可编程增益放大器(PGA),可以根据具体应用需求调整输入信号的放大倍数。 **模拟SPI协议** SPI是一种同步串行通信协议,通常用于微控制器与外部设备之间的通信。在ADS8688的应用中,由于它并不直接支持标准SPI,我们需要模拟SPI协议来与之交互。模拟SPI意味着主设备(通常是微控制器)需要自行控制时钟和数据线,以符合ADS8688的数据传输时序要求。这包括时钟极性和相位设置,以及正确的命令序列来配置ADC并读取采样值。 **读取ADC采样值的步骤** 1. **初始化**:设置微控制器的GPIO引脚作为模拟SPI的时钟(SCK)、数据输入(MISO)和数据输出(MOSI)。同时,根据ADS8688的数据手册,配置相应的寄存器以设定通道选择、采样率、增益等参数。 2. **发送命令**:向ADS8688发送开始转换的命令。这个命令通常由多个时钟周期组成,每个时钟周期对应一个数据位。 3. **等待转换完成**:在发送完命令后,需要等待ADC完成采样和转换过程。这可以通过检测特定的转换结束标志位实现。 4. **读取数据**:当转换完成后,通过MISO引脚接收ADC的数字输出。这个过程同样需要按照ADS8688的数据手册规定的时序进行。 5. **处理数据**:读取的数字数据可能需要进行一定的校验和格式转换,例如移位、去除噪声比特等,以得到最终的采样值。 **项目文件解析** - `ADS8688.ioc`:可能是一个I/O配置文件,用于描述硬件连接和通信参数。 - `.mxproject`:可能是项目工程文件,包含了编译和调试配置信息。 - `Drivers`:这个目录可能包含了用于驱动ADS8688的源代码,如模拟SPI的函数库。 - `Core`:可能包含项目的核心代码,如主循环、事件处理等。 - `Hardware`:可能包含硬件描述文件,如原理图、PCB布局等。 - `MDK-ARM`:这是Keil uVision IDE的工程文件,包含了用于ARM架构微控制器的源码和编译设置。 通过以上步骤,开发者可以成功地利用模拟SPI协议读取ADS8688的ADC采样值,从而实现对模拟信号的数字化处理。在实际应用中,还需要考虑电源稳定性、抗干扰措施以及实时性等问题,以确保系统的可靠运行。
2025-05-10 15:13:47 1.13MB ADS8688
1
在本文中,我们将探讨如何利用AT32微控制器的高级特性,包括高速ADC采样、PWM变频以及DMA(直接存储器访问)技术,来实现高效的数据处理和控制任务。AT32F437是一款高性能的微控制器,其内部集成了多个ADC单元和PWM定时器,以及强大的DMA控制器,这使得它非常适合于需要高速采样和实时控制的应用场景。 我们关注的是如何将AT32的ADC采样率提升至14.4MHz。常规的ADC采样率为4MHz,但通过巧妙地利用芯片资源,我们可以将其提高三倍。方法是利用三个独立的ADC通道,每个通道错开采集同一输入信号,然后将数据拼接,从而达到12MHz的采样率。在该过程中,ADC的时钟被设置为最大值的72MHz,每个12位转换需要15个ADC时钟周期。通过计算,我们可以得知采样频率为72MHz除以15乘以3,即14.4MHz。在实际测试中,通过配置Timer1触发ADC采样,使用DMA模式2进行数据传输,结果显示采样率接近14MHz,与理论计算相符。 接下来,我们讨论如何实现PWM频率从900kHz到1.1MHz的变频。这一任务需要用到DMA的多路复用功能,以及高级或通用定时器的DMA突发模式。具体操作中,选择Timer1的通道1映射到GPIOA的第8管脚,以驱动PWM输出。配置时,确保Timer的DMA设置正确,同时对GPIO进行适当配置,以便信号能够正确输出。在实际的实验中,虽然示波器捕获的波形并不完全按照900kHz到1.1MHz的频率变化,但证明了通过DMA和Timer的配合可以实现PWM频率的动态调整。 总结,通过AT32F437的ADC、PWM和DMA功能,我们可以实现高速的模拟信号采样和动态的数字信号输出。这样的技术组合对于实时信号处理和控制应用,例如音频处理、电机控制或者电力电子设备监控等,具有重要的价值。理解并熟练掌握这些技术,对于开发高效能的嵌入式系统至关重要。
2024-11-26 17:44:11 1.55MB AT32
1
在STM32系列的单片机中,ADC采样是由定时器触发的。而在DMA模式下,定时器产生的触发信号可以控制DMA的数据传输。本文将详细介绍ADC采样的DMA方式与定时器的相关知识。 一、DMA数据传输模式 DMA是“直接存储器访问”(Direct Memory Access)的缩写。DMA使用专门的控制器,把CPU从数据传输过程中解放出来,让CPU可以集中处理程序的逻辑。DMA数据传输模式分为两种: 抢占模式:每次DMA传输时都会占用总线,因此如果有多个DMA在同时传输时,会出现争用问题,导致DMA数据传输出现不稳定情况。 循环模式:DMA会循环传输数据。如果需要传输的数据长度大于DMA缓冲区大小,DMA会自动从缓冲区首地址重新开始传输数据,直到传输完毕。 二、ADC采样的DMA方式 ADC采样通常使用DMA方式来保存采样的数据。DMA控制器将采样到的数据存储在缓冲区中,当缓冲区满时通知CPU去处理数据。DMA传输模式可以使用抢占模式或循环模式。 在STM32微控制器中,ADC(模拟数字转换器)采样经常采用DMA(直接存储器访问)方式,配合定时器触发,以实现高效、低延迟的数据采集。下面将详细阐述这种工作模式的实现步骤及关键知识点。 了解DMA的基本原理。DMA是一种允许外设直接访问内存的技术,无需CPU参与数据传输过程。它分为抢占模式和循环模式。抢占模式下,多个DMA传输可能引发总线冲突,影响数据传输的稳定性;而循环模式则能确保数据连续传输,即使数据量大于缓冲区大小,也能自动从缓冲区头开始继续传输。 在ADC采样过程中,DMA模式的应用使得ADC转换完成后,结果能直接存入预先设定的内存区域,即DMA缓冲区。当缓冲区满时,DMA控制器会通过中断通知CPU处理这些数据,避免了频繁的上下文切换,提高了系统效率。 接下来,我们来看实现ADC采样DMA方式的具体步骤: 1. **配置DMA**:使用STM32的HAL库,调用`HAL_ADC_Start_DMA()`函数启动DMA传输。在此之前,需设置DMA控制器参数,如传输方向(从ADC到内存),传输数据大小(通常为16位),以及数据缓冲区的起始地址。 2. **配置ADC**:在初始化ADC时,选择外部触发模式,并指定定时器作为触发源。这需要在ADC的初始化结构体中设置相应的触发配置。 3. **配置定时器**:定时器的配置至关重要,因为它决定了ADC采样的频率和节奏。需要设置计数器值、时钟分频因子、自动重载值以及触发模式,确保定时器产生的中断能够正确触发ADC的转换。 4. **启动设备**:依次启动定时器、ADC和DMA。定时器的启动使得其开始计数,达到预设值时产生中断,触发ADC采样;ADC在接收到触发信号后开始转换;而DMA则开始接收ADC转换后的数据并存入缓冲区。 在实际应用中,为了确保系统的稳定性和效率,还需要考虑以下几个方面: - **中断管理**:当DMA缓冲区满时,会产生中断请求。需要设置适当的中断服务函数,以便在CPU空闲时处理ADC采样数据。 - **资源分配**:合理规划DMA通道和定时器资源,避免冲突和资源浪费。 - **错误处理**:设置错误处理机制,监控ADC、DMA和定时器的状态,确保异常情况下的系统安全。 STM32通过DMA和定时器实现ADC采样,不仅可以提高数据采集速度,还能降低CPU负载,优化系统性能。这种方法广泛应用于实时数据处理和高精度测量系统中。在设计和实现过程中,理解每个组件的工作原理并恰当配置,是保证系统稳定高效运行的关键。
2024-07-17 18:58:32 13KB stm32
1
基于STM32的ADC采样及各式滤波实现,滤波包含:一阶补偿滤波,算术平均滤波,中位值滤波,限幅平均滤波,滑动平均滤波和卡尔曼滤波。滤波可直接调用API函数,方便快捷,便于用于自己的项目中。(积分不够的朋友点波关注,无偿提供)
2024-07-17 08:58:37 13.3MB STM32 滤波算法
1
此程序主要是基于STM32和UCOS系统,用来采集ADC数据进行模拟信号输入
2023-11-22 12:00:14 5.3MB stm32ucosII
1
C8051F020实现ADC采样芯片外的模拟电压,通过LCD显示,并通过串口发送到PC机
2023-04-19 22:15:48 7KB ADC C8051F020
1