基于FPGA的Verilog实现FOC电流环系统设计与实现方法——基于ADC与S-PWM算法优化及其代码解读手册,带simulink模型与RTL图解。,基于FPGA的FOC电流环手动编写Verilog实现:高效、可读性强的源码与Simulink模型组合包,基于FPGA的FOC电流环实现 1.仅包含基本的电流环 2.采用verilog语言编写 3.电流环PI控制器 4.采用SVPWM算法 5.均通过处理转为整数运算 6.采用ADC采样,型号为AD7928,反馈为AS5600 7.采用串口通信 8.代码层次结构清晰,可读性强 9.代码与实际硬件相结合,便于理解 10.包含对应的simulink模型(结合模型,和rtl图,更容易理解代码) 11.代码可以运行 12.适用于采用foc控制的bldc和pmsm 13.此为源码和simulink模型的价,不包含硬件的图纸 A1 不是用Matlab等工具自动生成的代码,而是基于verilog,手动编写的 A2 二电平的Svpwm算法 A3 仅包含电流闭环 A4 单采样单更新,中断频率 计算频率,可以基于自己所移植的硬件,重新设置 ,基于FPGA的FO
2025-09-27 15:53:14 83KB xbox
1
内容概要:本文详细探讨了在FPGA上使用Verilog语言实现SAD(Sum of Absolute Differences)算法及其与AHB接口的数据传输交互。SAD算法用于图像匹配和运动估计,文中介绍了SAD算法的计算模块设计,采用流水线架构提升计算效率。此外,还讨论了三种窗口配置(计算、储存及AHB接口数据交互)的功能实现,并详细描述了AHB接口的数据传输模块和状态查询功能的设计。最后,通过仿真测试和硬件验证确保了系统的正确性和高效性。 适合人群:对FPGA开发有一定了解,特别是从事图像处理和嵌入式系统设计的专业人士。 使用场景及目标:适用于需要高效图像处理的应用场景,如视频编码、机器视觉等。目标是通过优化SAD算法和AHB接口设计,提高图像处理的速度和精度。 阅读建议:读者可以通过本文深入了解FPGA在图像处理中的应用,尤其是SAD算法的具体实现细节和AHB接口的数据传输机制。建议结合实际项目进行实践,以更好地掌握相关技术和方法。
2025-09-26 15:41:26 417KB
1
据多位下载的同学反应,该代码实现与标准协议有差异,我仔细核查了,确实有差异,代码需修正,请暂不要下载,修正后我会修改说明,谢谢大家支持。 (IRIG-B的Verilog实现,可综合,含python代码,可相互验证,具体原理说明见:https://blog.csdn.net/jz_ddk/article/details/147594965 使用遇到问题可在资源或博客提问。提供有限支持。)
2025-09-25 21:55:58 3KB IRIG-B verilog python
1
基于Vivado平台的AD9680 FPGA芯片测试程序:高速采样、lane4信号传输与jesd204b协议处理_Verilog实现,基于Vivado平台的AD9680 FPGA芯片测试程序——Verilog编写,实现1G采样率Lane4与JESD204B接收功能,基于vivado的ad9680 FPGA芯片测试程序,1g采样率lane4。 verilog编写,包括配置ad,配置时钟,jesd204b接收 ,基于您的描述,提取的核心关键词为: 基于Vivado的AD9680; FPGA芯片测试程序; 1G采样率; Lane4; Verilog编写; 配置AD; 配置时钟; JESD204B接收 结果用分号分隔为: 基于Vivado的AD9680; FPGA芯片测试; 1G采样率; Lane4; Verilog编程; AD配置; 时钟配置; JESD204B接收 这些关键词应该能概括您所描述的基于Vivado的ad9680 FPGA芯片测试程序的主要内容。,基于Vivado的AD9680 FPGA测试程序:1G采样率JESD204B接收配置与AD时钟设置
2025-09-23 17:29:45 355KB kind
1
基于Vivado平台的AD9653四通道Verilog源代码工程。该工程实现了125M采样率,支持SPI配置以及LVDS接口自动调整最佳延时功能。文中首先简述了工程背景及其重要性,接着深入探讨了Verilog源代码的具体实现细节,包括SPI配置部分和LVDS接口自动延时调整部分。最后,文章总结了该工程的实际应用效果,并强调了代码中有详细的注释,便于工程师理解和维护。 适合人群:具备FPGA开发经验的硬件工程师、嵌入式系统开发者以及对高速数据采集感兴趣的科研人员。 使用场景及目标:适用于需要高精度、高采样率数据采集的应用场景,如通信设备、医疗仪器、工业自动化等领域。目标是帮助工程师快速掌握并应用于实际项目中。 其他说明:该工程已经在实际项目中得到了验证,证明其可靠性和稳定性。同时,提供了丰富的注释,有助于进一步的学习和改进。
2025-09-22 15:42:10 551KB
1
SDRAM(Synchronous Dynamic Random-Access Memory)是同步动态随机存取存储器,它在现代电子设备中扮演着至关重要的角色,特别是在FPGA(Field-Programmable Gate Array)设计中。FPGA是一种可编程逻辑器件,允许用户自定义硬件电路以实现特定的功能。在FPGA设计中,SDRAM控制器是必不可少的部分,它负责管理和控制与外部SDRAM芯片的通信。 该资源提供了带中文注释的SDRAM控制器源码,这对于理解和学习SDRAM控制器的工作原理非常有帮助。源码通常使用硬件描述语言如Verilog编写,Verilog是一种广泛使用的语言,用于数字电路的建模和设计。 我们要理解SDRAM控制器的基本功能。它主要负责以下任务: 1. **时序控制**:SDRAM的操作需要严格的时序,控制器必须生成合适的地址、数据和控制信号,以确保与SDRAM的同步通信。这包括时钟信号(CKE、CLK)、命令信号(RAS、CAS、WE)以及预充电、行激活等操作。 2. **刷新管理**:SDRAM需要定期刷新以保持数据完整性,控制器必须定时发送刷新命令并管理刷新计数器。 3. **数据读写**:控制器接收CPU或其它系统组件的数据请求,将数据传输到SDRAM,或者从SDRAM读取数据并返回给请求者。 4. **地址映射**:控制器将CPU的虚拟地址转换为SDRAM的实际物理地址。 5. **错误检测和校正**:虽然这不是所有控制器必备的功能,但一些高级控制器可能包含ECC(Error Correction Code)机制,用于检测和纠正数据传输中的错误。 现在,考虑到这个源码带有中文注释,这对于初学者来说是一大福音。注释会解释每个模块和代码段的作用,使得理解更直观,学习曲线更平缓。例如,你可能会看到关于时钟分频器(用于生成SDRAM所需的精确时钟)、地址解码器(将总线地址转换为SDRAM地址)和数据缓冲区(用于数据传输同步)的注释。 在仿真方面,这通常意味着你可以使用像ModelSim或Vivado这样的工具来验证代码的功能是否正确。你可以设置不同的输入条件,观察输出结果,检查SDRAM控制器是否按预期工作。 在线调试则意味着可能提供了一种方式,可以在实际FPGA上实时查看和修改控制器的行为,这对于优化性能和解决硬件问题至关重要。 在使用这个源码时,你应该先理解基本的SDRAM工作原理,然后逐步研究源码,通过仿真验证其功能。一旦理解了代码,你可以根据实际需求对其进行修改,例如增加支持更大容量的SDRAM,或者优化其性能以满足高速数据处理的需求。 这个资源对于想要深入学习FPGA设计,尤其是SDRAM控制器实现的工程师或学生来说,是一份宝贵的资料。通过实践和调试,你可以提升自己的硬件设计技能,并且更好地掌握Verilog编程。
2025-09-22 11:18:11 4.69MB FPGA SDRAM verilog
1
内容概要:本文详细介绍了基于FPGA的2DPSK调制解调系统的Verilog实现方法。首先解释了2DPSK的基本原理,即利用相邻码元的相位变化来表示数据,而不是直接传输绝对相位。接着,文章展示了具体的硬件实现步骤,包括差分编码、载波生成、相位切换以及解调端的关键技术如延迟相干法和积分判决。文中还提供了详细的Verilog代码片段,涵盖了差分编码器、载波发生器、相干解调器等模块的设计,并强调了时序对齐的重要性。此外,作者分享了一些实用技巧,如使用查找表代替DDS核节省资源,以及在积分判决前增加滑动平均滤波器提高抗噪声能力。最后,通过仿真实验验证了系统的性能,在20dB信噪比下实现了低于10^-4的误码率。 适合人群:具有一定FPGA开发经验的工程师和技术爱好者,尤其是对通信调制解调感兴趣的读者。 使用场景及目标:适用于希望深入了解2DPSK调制解调机制并在FPGA平台上进行实际开发的人群。主要目标是掌握2DPSK的工作原理及其在FPGA上的具体实现方法,能够独立完成类似项目的开发。 其他说明:文章不仅提供了理论讲解,还包括大量实战经验和优化建议,有助于读者更好地理解和应用所学知识。
2025-09-20 23:58:39 1.41MB FPGA Verilog 相干解调
1
内容概要:本文详细介绍了如何使用Verilog在FPGA上实现视频缩放和四路图像拼接的技术。具体来说,它描述了将HDMI 1080P输入的视频缩小到960×540分辨率的方法,以及如何将四路960×540的视频流拼接并在1080P屏幕上显示。文中涵盖了视频缩放的基本原理(如插值和降采样),以及四路视频拼接的设计思路(如坐标变换和布局算法)。此外,还讨论了具体的Verilog代码实现细节,包括模块接口定义、信号处理和仿真测试。 适合人群:对FPGA开发和视频处理感兴趣的电子工程师、硬件开发者和技术爱好者。 使用场景及目标:适用于需要理解和掌握基于FPGA的视频处理技术的人群,特别是那些希望深入了解视频缩放和多路视频拼接的具体实现方式及其应用场景的专业人士。 其他说明:文章不仅提供了理论知识,还包括实际的操作指导,有助于读者通过动手实践加深对相关概念的理解。同时,也为后续更复杂视频处理项目的开展奠定了基础。
2025-09-18 20:15:44 123KB
1
在数字电路设计中,毛刺消除和输入消抖是两个重要的概念,特别是在FPGA(Field-Programmable Gate Array)开发中。毛刺是由于信号传输过程中的噪声或硬件问题导致的短暂异常脉冲,而输入消抖则是为了处理快速开关的输入信号,避免由于机械抖动引起的误触发。这两个技术在Verilog编程中尤为重要,因为它们可以确保设计的稳定性和可靠性。 让我们了解毛刺消除。毛刺通常是由电源波动、电磁干扰或者逻辑门延迟不匹配造成的。单边毛刺滤除通常是指对上升沿或下降沿的短暂异常进行过滤,例如,通过设置一个最小宽度阈值,只接受超过这个阈值的脉冲。双边毛刺滤除则更为全面,它会检查信号的上升沿和下降沿,确保信号在变化过程中保持稳定的时间间隔。在Verilog中,可以通过比较器和寄存器实现这种滤波,例如,用一个寄存器存储前一时刻的信号状态,然后与当前信号比较,只有当信号状态持续改变一定时间后才输出。 接下来是输入消抖,这是针对机械开关(如按钮)输入的处理方法。由于机械结构的物理特性,这些输入可能会在短时间内反复切换,造成不必要的多次触发。输入防抖的基本思想是在检测到一个新状态后,等待一段时间再确认该状态,如果在这段时间内输入没有再次改变,那么就认为这是一个稳定的信号。在Verilog中,可以创建一个计时器,当输入改变时启动计时器,如果在预设时间内输入没有再次改变,就输出稳定的状态。 下面是一个简单的Verilog代码示例,演示了输入消抖的过程: ```verilog module input_debounce( input wire clk, input wire btn_in, output reg btn_out ); parameter DEBOUNCE_TIME = 10; // 假设消抖时间为10个时钟周期 reg [DEBOUNCE_TIME-1:0] counter; always @(posedge clk) begin if (!btn_in && btn_out) begin counter <= {counter[DEBOUNCE_TIME-2:0], 1'b0}; end else if (btn_in && !btn_out) begin counter <= {counter[DEBOUNCE_TIME-2:0], 1'b1}; end else begin counter <= counter - 1; end if (counter == 0) begin btn_out <= btn_in; end end endmodule ``` 在这个例子中,`counter`用于计时,每当输入`btn_in`变化时,计时器重置并开始计数。如果在`DEBOUNCE_TIME`个时钟周期内输入没有再次变化,`btn_out`将更新为稳定的输入状态。 对于测试和验证,我们可以创建一个Testbench,模拟不同的输入序列,观察输出是否正确地进行了消抖和毛刺滤除。仿真结果通常会显示波形图,清晰地展示出输入和经过处理后的输出之间的关系,帮助我们验证设计的正确性。 毛刺消除和输入消抖是数字系统设计中不可或缺的部分,它们确保了信号的可靠传输和处理。通过Verilog编程,我们可以实现这些功能,并通过Testbench和仿真结果来验证其有效性。在实际项目中,理解和应用这些概念有助于提高系统的稳定性和用户体验。
2025-09-18 10:42:39 53KB fpga verilog
1
在基于ISO/IEC18000-6C协议的超高频读写器系统设计中,密勒调制副载波编解码设计是超高频读写器系统设计中的关键技术之一。在研究密勒调制副载波序列特点的基础上,提出一种基于FPGA并运用VerilogHDL硬件描述语言实现的密勒调制副载波编解码设计方法,并利用Altera公司CycloneI系列EP1C12Q芯片与Verilog HDL硬件描述语言实现。仿真结果表明,采用FPGA完成密勒调制副载波编解码设计,编解码模块输出完全正确,处理速度快,达到了设计预期要求,编解码设计具有效率高、扩展性强、方便集成等优点。
2025-09-17 01:21:03 588KB FPGA; Verilog
1