深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑 进行分析学习的神经网络,它模仿人脑的机制来解释数据, 神经科学中的发现,该发现也获得了诺贝尔医学奖: 人脑视觉机理后脑皮层的不同视觉神经元,与瞳孔所受刺激之间,存在某种对应关系。 这个发现激发了人们对于神经系统的进一步思考。神经-中枢-大脑的工作过程,或许是一个不断迭代、不断抽象的过程。
2023-11-24 16:55:11 4.25MB report PPT
1
分享一套图神经网络视频教程——《深度学习-图神经网络实战》,视频+源码+数据+文档资料下载! 《深度学习-图神经网络实战》课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。内容主要包括三个模块: 1、图神经⽹络经典算法解读,详细解读GNN,GCN,注意⼒机制图模型等算法 ; 2 、图神经⽹络框架PyTorch-Geometric,全程实战解读图神经⽹络框架应⽤⽅法; 3 、图神经⽹络项⽬实战,基于真实数据集与实际项⽬展开图数据集构建与模型训练并应⽤到实际场景中。 整体⻛格通俗易懂,提供全部数据与代码。
2023-05-19 18:57:42 1KB 深度学习 pytorch pytorch 神经网络
1
给大家分享一套课程——《深度学习-图神经网络实战课》,提供全部数据与代码。 图神经⽹络模块课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。
2023-04-11 15:28:48 730B 神经网络 深度学习
1
这是总结的深度学习中常用的11个图数据集。 1. 近年来,深度学习越来越关注图方向的任务,通过利用图神经网络去挖掘现实中各种可以利用图来表示事物(社交网络,论文引用网络,分子结构)等等,来学习更好的表示,去实现下游任务。 2. 图数据是由一些点和一些线构成的,能表示一些实体之间的关系,图中的点就是实体,线就是实体间的关系。如下图,v就是顶点,e是边,u是整张图。attrinbutes(feature)是信息的意思,每个点、每条边、每个图都是有信息的。 3. 图数据集对于图任务的科研是必备的。深度学习中常用的图数据集:Cora、Citeseer(Cite)、Pubmed、DBLP、ACM、AMAP、AMAC、Corafull、WIKI、BAT、EAT、UAT。
2023-04-02 18:25:09 31.04MB 图数据集 深度学习 图神经网络
1
 针对高等院校网络舆情分析与危机舆情预警的需求,文中对语义情感分析方法进行了研究。通过结合深度学习中循环神经网络(CNN)和心理学领域的注意力机制模型(Attention),提出了ATRNN网络。该网络使用长短期记忆结构(LSTM)作为RNN隐藏层的基本单元,可以处理任意长度的语义信息。网络通过引入Dropout机制,避免网络训练中的过拟合现象,提升训练效果。为了评估模型效果,文中在NLPCC的开放数据集上进行测试。相较于RNN网络,在正面情绪文本上,准确率、召回率和F1可以提升3.3%,1.7%和2.5%;在负面情绪文本上,可以提升4.4%,4.5%和4.4%。
1
深度学习利用循环神经网络预测股价走势,包含多种情况,多个例子,还有简要的原理注释说明。
2023-01-04 12:28:00 4.29MB 人工智能 深度学习 循环神经网络 RNN
1
这是关于图神经网络入门学习的一个简单资料。仅学习使用。
2022-12-28 09:29:01 1.41MB 人工智能 深度学习 图神经网络 GNN
1
此ppt分别从脉冲神经元、编码方式、学习策略以及总结展望四个方面对SNN进行讲解,并刨析了两篇基础论文。
2022-12-07 09:28:53 2.09MB 计算机视觉 深度学习 脉冲神经网络 SNN
1
机器学习与数据挖掘实验三:基于 Resnet,VGG,GoogLeNet的海面舰船图像分类,采用pytorch实现,包含数据集,三种网络实现图像分类源代码,gradcam可解释性分析代码。
2022-11-21 15:26:55 129.17MB 深度学习 pytorch 神经网络
1
使用keras实现神经网络,实现交通指示牌的识别
2022-10-31 16:50:38 4KB keras 深度学习 神经网络交通 python
1