深度学习利用循环神经网络预测股价走势

上传者: 44232357 | 上传时间: 2023-01-04 12:28:00 | 文件大小: 4.29MB | 文件类型: ZIP
深度学习利用循环神经网络预测股价走势,包含多种情况,多个例子,还有简要的原理注释说明。

文件下载

资源详情

[{"title":"( 40 个子文件 4.29MB ) 深度学习利用循环神经网络预测股价走势","children":[{"title":"stock-prediction-master","children":[{"title":".idea","children":[{"title":"dataSources.local.xml <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 9.88KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"stock-prediction-master.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":true},{"title":"数据样例","children":[{"title":"rlData.csv <span style='color:#111;'> 18.49KB </span>","children":null,"spread":false},{"title":"FSV.csv <span style='color:#111;'> 16.53KB </span>","children":null,"spread":false},{"title":"TMUS.csv <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"SINA.csv <span style='color:#111;'> 16.83KB </span>","children":null,"spread":false},{"title":"weather.csv <span style='color:#111;'> 97.35KB </span>","children":null,"spread":false},{"title":"MONDY.csv <span style='color:#111;'> 15.94KB </span>","children":null,"spread":false},{"title":"GOOG.csv <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"MTDR.csv <span style='color:#111;'> 17.00KB </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"FB.csv <span style='color:#111;'> 18.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"python(.py) <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"代码","children":[{"title":"LSTM从理论基础到代码实战 4 多维特征股票价格预测_Pytorch.ipynb <span style='color:#111;'> 21.34KB </span>","children":null,"spread":false},{"title":"1.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"LLSTM从理论基础到代码实战 6 MultiModel横向对比.ipynb <span style='color:#111;'> 157.76KB </span>","children":null,"spread":false},{"title":"LSTM从理论基础到代码实战 2_TensorFlow.ipynb <span style='color:#111;'> 210.30KB </span>","children":null,"spread":false},{"title":"LSTM从理论基础到代码实战 5 一阶差分_Pytorch.ipynb <span style='color:#111;'> 330.72KB </span>","children":null,"spread":false},{"title":"LSTM从理论基础到代码实战 3 股票价格预测_Pytorch.ipynb <span style='color:#111;'> 14.42KB </span>","children":null,"spread":false},{"title":"LSTM从理论基础到代码实战 4 多维特征股票价格预测_Pytorch.py <span style='color:#111;'> 12.53KB </span>","children":null,"spread":false},{"title":"self attention.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"LSTM从理论基础到代码实战 4 多维特征股票价格预测_Pytorch-checkpoint.ipynb <span style='color:#111;'> 20.60KB </span>","children":null,"spread":false},{"title":"LSTM从理论基础到代码实战 5 一阶差分_Pytorch-checkpoint.ipynb <span style='color:#111;'> 329.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"强化学习与股票买卖分析下 .ipynb <span style='color:#111;'> 101.53KB </span>","children":null,"spread":false},{"title":"StemGNN.zip <span style='color:#111;'> 28.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"课件","children":[{"title":"Transformer for TS.pdf <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"0-深度学习作金融数据分析.pdf <span style='color:#111;'> 109.56KB </span>","children":null,"spread":false},{"title":"1-数据工程.pdf <span style='color:#111;'> 163.71KB </span>","children":null,"spread":false},{"title":"2-LSTM从理论基础到代码实战.pdf <span style='color:#111;'> 693.41KB </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"3-lstm序列的自相关性.md <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"frameNotes.pdf <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 83B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明