内容概要:本文档是电子科技大学2024年研究生一年级《机器学习》考试的回忆版真题,由考生在考试后根据记忆整理而成。文档涵盖了机器学习的基本概念和常见算法,如监督学习、非监督学习、混淆矩阵计算、梯度下降法、线性回归、朴素贝叶斯分类器、神经网络的前向与反向传播、决策树的信息熵和信息增益、集成学习中的Boosting和Bagging、K均值聚类和支持向量机等知识点。每道题目附有详细的参考答案,旨在帮助学生复习备考。此外,作者还提醒考生注意老师的课堂划重点,并指出书店复习资料老旧,建议不要购买。 适合人群:正在准备电子科技大学《机器学习》课程考试的研究生一年级学生,以及希望巩固机器学习基础知识的学习者。 使用场景及目标:①用于复习和备考电子科技大学《机器学习》研究生一年级考试;②帮助学生理解并掌握机器学习的核心概念和算法;③通过实际题目练习提高解题能力。 阅读建议:此文档由考生回忆整理,部分数据可能与原题略有差异,但知识点完全一致。考生应重点关注老师课堂上的划重点内容,并结合本试题进行针对性复习。同时,建议考生在复习过程中多动手实践,加深对公式的理解和记忆,特别是对于容易混淆的概念和公式,要反复练习确保熟练掌握。
1
梯度下降法是一种广泛应用于机器学习、深度学习和其他优化领域的算法,其主要目的是找到一个多元函数的局部最小值,即在满足一定条件的情况下,寻找一组参数,使得函数达到最小值。该方法也被称为最速下降法,其基本思想是利用函数的梯度信息,指导搜索过程向函数值减小最快的方向进行,以期望尽快地找到函数的最小值。 在梯度下降法中,函数J(a)在某点a的梯度是一个向量,它指向函数值增长最快的方向。因此,负梯度方向就是函数值下降最快的方向。在求函数极小值时,可以通过从任意初始点出发,沿着负梯度方向走步,以最快的速度降低函数J(a)的值。这种方法被反复迭代应用,直至满足一定的停止准则,如函数值的改变量小于某个阈值或者迭代次数达到预设值。 在实施梯度下降法时,需要确定步长,即每次沿着负梯度方向走的“步子”大小。步长的选择对算法的收敛速度和稳定性有重要影响。如果步长设置得太小,算法会收敛得非常慢;而如果步长太大,则可能导致算法发散,无法收束到最小值点。此外,在迭代过程中,还需注意选取合适的初始点,以及如何确定迭代的终止条件。 在具体的迭代公式中,从初始点a出发,通过计算负梯度及其单位向量,并结合步长选择策略,可以得到新的点a'。这个过程中需要检查是否满足停止条件,比如当前点的梯度值的大小小于一个给定的阈值。如果不满足停止条件,则需要计算最佳步长,并更新当前点。这个更新过程会一直迭代进行,直到满足停止条件。最终输出结果,即为局部最小值。 总结而言,梯度下降法的核心是利用函数的梯度信息来进行优化搜索。它具有易于理解和实现的优点,但是也存在一些缺陷,例如可能会陷入局部最小而非全局最小,以及在高维空间中收敛速度可能会变慢等。梯度下降法仍然是许多优化问题中不可或缺的基础算法,其变种和改进方法也广泛应用于复杂问题的求解。
2025-10-24 11:05:15 1.92MB
1
随机并行梯度下降算法是一种极具应用潜力的自适应光学系统控制算法,具有不依赖波前传感器直接对系统性能指标进行优化的特点。基于32单元变形镜、CCD成像器件等建立自适应光学系统随机并行梯度下降控制算法实验平台。考察算法增益系数和扰动幅度对校正效果和收敛速度的影响,验证随机并行梯度下降算法的基本原理。实验结果表明参量选取合适的情况下,随机并行梯度下降控制算法对静态或慢变化的畸变波前具有较好的校正能力。根据实验结果分析了影响随机并行梯度下降算法校正速度的主要因素。
2025-08-01 11:12:07 1.67MB 自适应光
1
这是用于使用软边界模型和次梯度下降优化的 2 类问题的支持向量机代码。
2024-04-14 15:15:16 81KB matlab
1
梯度下降法(Gradient Descent)是机器学习和深度学习中最基本、最重要的优化算法之一。它被用于训练神经网络、拟合模型参数和解决各种问题。本博客将深入探讨梯度下降法的原理、不同变种、超参数调优和实际应用,帮助您全面理解这一关键概念。 目录 介绍 什么是梯度下降法? 为什么需要梯度下降法? 梯度下降法的原理 目标函数与损失函数 梯度的定义 梯度下降的基本思想 梯度下降的变种 批量梯度下降(Batch Gradient Descent) 随机梯度下降(Stochastic Gradient Descent) 小批量梯度下降(Mini-batch Gradient Descent) 超参数调优 学习率的选择 收敛条件 动量与学习率衰减 梯度下降的实际应用 线性回归 逻辑回归 神经网络训练 梯度下降的优化技巧 自适应学习率 Adam优化器 梯度下降的局限性 局部最小值问题 鞍点问题 总结与展望 梯度下降的优点 未来发展方向
2024-01-19 14:28:16 15KB 神经网络
1
deep-learning personal practice 深度学习个人练习,该项目实现了深度学习中一些常用的算法,内容包括: 四种初始化方法:zero initialize, random initialize, xavier initialize, he initialize。 深度神经网络 正则化 dropout 三种梯度下降方法:BGD, SGD, mini-batch 六种优化算法:momentum、nesterov momentum、Adagrad、Adadelta、RMSprop、Adam 梯度检验 batch normalization recurrent neural network (RNN) Note: 下列 1-10中网络架构主要为四大块: initialize parameters、forward propagation、backward propagati
2023-10-06 17:02:27 341KB 附件源码 文章源码
1
1、内附Exel数据集,8000组作为训练集,剩余的作为测试集; 2、有监督学习方式:梯度下降优化中心向量C、宽度D、权值W; 3、目标误差为10*e-5; 4、纯matlab代码,未使用神经网络工具箱。
2023-05-16 22:08:34 543KB 神经网络 matlab 软件/插件
1
运动加速度抑制的动态步长梯度下降姿态解算算法.pdf
2023-05-15 18:06:47 2.45MB IMU
1
heed算法matlab代码MATLAB SVM-不推荐 具有梯度下降功能的SVM算法的旧式,简单,低级(未完成?)实现。 不包括内核。 不建议将此代码用于一般,直接的用法。 Matlab带有更有效的SVM实现(不使用梯度下降等)。 该代码对于理解SVM算法很有用,并且是创建您自己专门设计的(低级)SVM的基础。 免责声明:我相信还有实现(<->语法)错误,请注意。 版权:完全没有,请随意使用,更改和共享。
2023-04-20 20:23:09 4KB 系统开源
1
一元线性回归数据集
2023-04-05 12:30:22 12KB 一元线性回归数据集
1