深入理解梯度下降法:从原理到实践

上传者: m0_68036862 | 上传时间: 2024-01-19 14:28:16 | 文件大小: 15KB | 文件类型: DOCX
梯度下降法(Gradient Descent)是机器学习和深度学习中最基本、最重要的优化算法之一。它被用于训练神经网络、拟合模型参数和解决各种问题。本博客将深入探讨梯度下降法的原理、不同变种、超参数调优和实际应用,帮助您全面理解这一关键概念。 目录 介绍 什么是梯度下降法? 为什么需要梯度下降法? 梯度下降法的原理 目标函数与损失函数 梯度的定义 梯度下降的基本思想 梯度下降的变种 批量梯度下降(Batch Gradient Descent) 随机梯度下降(Stochastic Gradient Descent) 小批量梯度下降(Mini-batch Gradient Descent) 超参数调优 学习率的选择 收敛条件 动量与学习率衰减 梯度下降的实际应用 线性回归 逻辑回归 神经网络训练 梯度下降的优化技巧 自适应学习率 Adam优化器 梯度下降的局限性 局部最小值问题 鞍点问题 总结与展望 梯度下降的优点 未来发展方向

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明