基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)内容概要:本文围绕基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞技术展开研究,结合Matlab代码实现,重点探讨了在复杂动态环境中多无人机系统的状态估计与碰撞规避控制策略。文中利用UKF对无人机系统状态进行高精度非线性估计,提升感知准确性,并结合MPC实现未来轨迹的滚动优化与实时反馈控制,有效应对多机交互中的避障需求。研究涵盖了算法建模、仿真验证及关键技术模块的设计,展示了UKF与MPC在多无人机协同飞行中的融合优势。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事无人机控制、智能交通、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多无人机协同任务中的实时避撞系统设计;②为非线性状态估计(如UKF)与最优预测控制(如MPC)的结合提供实践范例;③服务于高校科研项目、毕业设计或工业级无人机控制系统开发。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解UKF的状态估计机制与MPC的优化控制过程,注意参数调优与仿真环境设置,以获得更真实的避撞效果验证。
1
本文详细介绍了卡尔曼滤波在运动模型中的应用,特别是针对线性运动模型(如CV和CA模型)和非线性运动模型(如CTRV模型)的处理方法。作者在学习卡尔曼滤波时发现,线性运动可以直接使用卡尔曼滤波,而非线性运动则需要扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)。文章通过Python代码实现了CV、CA和CTRV模型的建模和推导,并分析了不同运动模型下的滤波效果。此外,作者还探讨了EKF在非线性运动模型中的应用,包括状态转移函数的线性化处理以及测量更新过程中的卡尔曼增益计算。最后,通过仿真结果展示了不同运动模型下的滤波效果,并讨论了偏航角对滤波结果的影响。 卡尔曼滤波是一种高效的递归滤波器,广泛应用于线性和非线性系统的动态数据处理中。在运动模型的应用中,其核心思想是通过构建数学模型来描述系统的动态行为,并利用观测数据来修正模型预测,从而得到对系统状态的最佳估计。 线性运动模型,例如恒速(Constant Velocity, CV)模型和恒加速度(Constant Acceleration, CA)模型,其运动过程可以通过线性方程来描述。对于这类线性模型,标准的卡尔曼滤波算法足够用于实现状态估计。标准卡尔曼滤波包含两个基本步骤:预测和更新。在预测阶段,基于当前状态和系统动态,预测下一时刻的状态。在更新阶段,当获得新的观测数据时,利用卡尔曼增益对预测状态进行修正,以得到更精确的状态估计。 然而,在现实世界中,许多运动系统并非严格线性,而是呈现非线性特征。比如转弯运动(Curvilinear Turning Rate and Velocity, CTRV)模型,其运动轨迹和速度变化受到多种因素的影响,不能简单地用线性方程来描述。非线性系统的处理需要使用扩展卡尔曼滤波(Extended Kalman Filter, EKF)或无迹卡尔曼滤波(Unscented Kalman Filter, UKF)。EKF通过线性化处理非线性函数来近似,而UKF则采用一组经过精心选择的样本来表示随机变量的不确定性,能够更准确地处理非线性问题。 EKF在非线性运动模型的应用中,首先需要进行状态转移函数的线性化,常用的方法是泰勒展开取一阶近似。之后,与标准卡尔曼滤波类似,EKF也包含预测和更新两步。但由于其处理的是线性化的非线性函数,因此在计算卡尔曼增益时可能会产生较大的误差。针对此问题,UKF采用无迹变换的方式来选择一组Sigma点,这些点能够更加准确地捕捉非线性函数的概率分布特性,从而得到更为精确的滤波结果。 在进行运动模型的状态估计时,除了模型本身的选择,外部因素如传感器的噪声水平、采样频率和模型误差也会影响滤波效果。因此,在设计滤波器时,对这些因素的考虑是必不可少的。文章中通过Python编程语言实现了CV、CA和CTRV模型的建模和推导,这为相关领域的研究者和工程师提供了一个宝贵的实践工具,能够帮助他们更好地理解和运用卡尔曼滤波技术。 通过仿真结果展示了不同运动模型下的滤波效果,并讨论了偏航角变化对滤波结果的影响。偏航角作为描述运动方向的重要参数,在某些应用中可能表现出较大的不确定性,因此正确处理偏航角对于提高滤波精度至关重要。通过分析偏航角变化对滤波结果的影响,研究者可以更加明确地认识到在模型中合理处理该参数的重要性。 卡尔曼滤波在运动模型中的应用不仅限于理论研究,更广泛地应用于自动驾驶、航空航天、机器人导航和目标跟踪等多个领域。正确理解和实现卡尔曼滤波算法,对于提高上述应用领域的性能和准确性具有至关重要的作用。
1
基于无迹卡尔曼滤波和扩展卡尔曼滤波的路面附着系数估计研究——基于Matlab Simulink环境,基于Matlab Simulink的无迹卡尔曼与扩展卡尔曼滤波的路面附着系数估计研究,路面附着系数估计,采用UKF和EKF两种算法。 软件为Matlab Simulink,非Carsim联合仿真。 dugoff轮胎模块:纯simulink搭非代码 整车模块:7自由度整车模型 估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波,均是simulink现成模块应用无需S-function 带有相关文献和估计说明 ,路面附着系数估计;UKF算法;EKF算法;Matlab Simulink;dugoff轮胎模块;7自由度整车模型;无迹卡尔曼滤波;扩展卡尔曼滤波;相关文献;估计说明,基于UKF和EKF算法的路面附着系数估计研究:Matlab Simulink实现
2025-12-19 10:16:38 6.52MB sass
1
基于MATLAB的无迹卡尔曼滤波算法参数辨识完整代码实现,MATLAB中完整可运行的无迹卡尔曼滤波参数辨识代码解析与实现,无迹卡尔曼滤波参数辨识MATLAB完整代码可运行 ,无迹卡尔曼滤波; 参数辨识; MATLAB完整代码; 可运行,无迹卡尔曼滤波参数辨识代码MATLAB 在当前的控制系统和信号处理领域,卡尔曼滤波器作为一种有效的递归滤波器被广泛研究和应用。无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)是卡尔曼滤波技术的一个重要分支,其核心思想是利用一组精心挑选的采样点(Sigma点)来近似系统的非线性特性,从而在不损失精度的情况下更准确地描述系统状态的转移。无迹卡尔曼滤波器特别适合于处理非线性系统的状态估计问题。 本文档“无迹卡尔曼滤波参数辨识的完整代码实现”旨在提供一个在MATLAB环境下完整的、可运行的无迹卡尔曼滤波算法实现示例。文档中详细解析了无迹卡尔曼滤波的工作原理,包括其初始化、预测、更新、状态估计和协方差更新等关键步骤。读者通过阅读该文档能够深入理解UKF的算法结构,并能够根据具体应用场景进行代码的调整和优化,实现对自己研究或者工程问题的参数辨识。 文档中提到的“基于学习和数据驱动的无人船舶航向控制和轨迹跟踪”部分,展示了如何将无迹卡尔曼滤波应用于复杂的动态系统的控制和轨迹预测问题。无人船舶作为海洋工程中的重要组成部分,其航向控制和轨迹跟踪技术的研究对于提高船舶的自主导航能力、保障海上交通安全以及开发无人船舶技术具有重大意义。通过数据驱动的方法和无迹卡尔曼滤波算法,可以有效提高对海洋环境变化和船舶动态行为的预测准确性,进而实现对无人船舶更为精确的控制。 在实际应用中,无迹卡尔曼滤波器的参数设置对算法的性能有着直接的影响。参数辨识是优化UKF算法性能的重要步骤。通过调整相关的参数,比如过程噪声和测量噪声的协方差,可以使滤波器更好地适应实际的动态过程和测量噪声特性。参数辨识过程通常涉及到大量试验和仿真实验,以找到最佳的参数配置。 文档中还提供了一些相关的HTML文件和图片资源,这些资源有助于读者更好地理解无迹卡尔曼滤波算法以及如何在MATLAB中实现相关代码。这些图片可能包括算法流程图、系统动态示意图等,有助于可视化复杂概念和算法过程。HTML文件中可能包含了对文档结构的索引或者对特定算法部分的详细介绍,为读者提供了一个清晰的学习路径。 文档“无迹卡尔曼滤波参数辨识的完整代码实现”不仅提供了一个宝贵的无迹卡尔曼滤波算法的实现工具,而且通过丰富的示例和解释,使读者能够更加深入地理解无迹卡尔曼滤波技术,并将其应用到实际的控制系统和信号处理问题中。这种技术的掌握对于工程师和研究人员来说具有很高的实用价值,能够显著提高处理非线性动态系统的效率和精度。
2025-11-25 15:58:50 348KB
1
# 基于C语言的STM32F4无迹卡尔曼滤波器 ## 项目简介 本项目是一个为STM32F4微控制器实现的无迹卡尔曼滤波器,使用C语言编写。项目在VSCode中开发,并借助Renode模拟器进行调试。 ## 项目的主要特性和功能 实现了适用于STM32F4微控制器的无迹卡尔曼滤波器。 利用Renode模拟器进行调试,方便开发和测试。 ## 安装使用步骤 ### 安装依赖 1. 安装armnoneeabigcc工具链并添加到系统路径。[下载链接](https:developer.arm.comtoolsandsoftwareopensourcesoftwaredevelopertoolsgnutoolchaingnurmdownloads) 2. 安装Renode并添加到系统路径。[下载链接](https:renode.io) ### 下载项目 2. 进入项目根目录cd UKFSTM32F4
2025-11-25 13:33:19 212KB
1
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。
1
内容概要:本文详细介绍了基于无迹卡尔曼滤波(UKF)算法的MPU9250姿态角解算程序的实现过程。MPU9250作为一款集成3轴陀螺仪、3轴加速度计和3轴磁力计的6轴运动跟踪设备,在无人机、VR设备、机器人等领域广泛应用。文中阐述了使用STM32H750/743 MCU通过SPI接口与MPU9250通信的具体步骤,包括初始化、数据读取、UKF算法融合解算以及最终通过串口打印姿态角数据。此外,还涉及了加计陀螺校准和磁力计校准以确保数据准确性,并使用W25QXX存储器保存解算后的数据。 适合人群:对嵌入式系统开发有兴趣的研发人员,尤其是那些从事无人机、VR设备、机器人等相关领域的工程师。 使用场景及目标:适用于需要高精度姿态角解算的应用场合,如无人机飞行控制系统、虚拟现实交互设备等。目标是提升姿态角解算的精确度,优化系统的稳定性和响应性能。 其他说明:文中提供了简化的代码示例,展示了从初始化到数据处理再到结果显示的关键环节。对于想要深入了解UKF算法及其在实际工程中应用的开发者来说,这是一个很好的实践案例。
2025-08-22 20:59:30 1.32MB
1
激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 SensorFusion-UKF 激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 基于无迹卡尔曼滤波,改成ROS协议下的 #你需要配置ROS环境以及C++编译 Unscented Kalman Filter Project Starter Code Self-Driving Car Engineer Nanodegree Program Dependencies cmake >= v3.5 make >= v4.1 gcc/g++ >= v5.4 Basic Build Instructions Clone this repo. Make a build directory: mkdir build && cd build Compile: cmake .. && make Run it: ./UnscentedKF path/to/input.txt path/to/output.txt. You can find some sample inputs in 'data/'. e
2025-06-16 22:17:12 213KB
1
自己创建的MATLAB程序。 作用:基于经典的无迹卡尔曼滤波(不敏卡尔曼滤波、无味卡尔曼滤波,都是UKF)改进的自适应UKF,根据观测的误差自适应调节观测误差,以达到提高滤波精度的作用。 亮点:只有一个m文件,方便运行,给出了与经典UKF的结果对比。
2024-08-23 10:18:01 7KB matlab
1
本文深入探讨了电力系统动态状态估计的两种方法:扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。文章首先介绍了这两种滤波技术的基本原理和算法流程,接着通过实例分析和数值模拟,比较了它们在电力系统状态估计中的性能差异。此外,文章还讨论了如何根据电力系统的具体特点和需求,选择最合适的滤波方法。本文旨在为电力工程师和研究人员提供有关动态状态估计的实用指南,并推动相关领域的进一步研究和发展。 适用人群:电力工程师、控制系统研究人员、卡尔曼滤波技术爱好者 使用场景:电力系统状态监测、故障诊断、系统控制与优化 电力系统、动态状态估计、扩展卡尔曼滤波、无迹卡尔曼滤波
2024-06-18 09:47:32 8.82MB matlab 无迹卡尔曼滤波
1