本文提出一种基于核SMOTE(Synthetic Minority Over-sampling Technique)的分类方法来处理支持向量机(SVM)在非平衡数据集上的分类问题.其核心思想是首先在特征空间中采用核SMOTE方法对少数类样本进行上采样,然后通过输入空间和特征空间的距离关系寻找所合成样本在输入空间的原像,最后再采用SVM对其进行训练.实验表明,核SMOTE方法所合成的样本质量高于SMOTE算法,从而有效提高SVM在非平衡数据集上的分类效果.
2024-05-20 16:31:07 531KB 支持向量机;
1
分布最优平衡分层交叉验证 (DOB-SCV) 将数据集划分为 n 折,这样,除了基于标签的分层之外,还可以为每个类维护特征空间中的平衡分布。 使用 DOB-SCV 而不是分层交叉验证的实际效果是稍微提高了测试准确性。 最大的改进可以预期在小的、类别不平衡的数据集上。 该实现可用作CVPARTITION的直接替代。 参考:关于分区诱导的数据集偏移对 k 折交叉验证的影响的研究,可从https://ieeexplore.ieee.org/document/6226477 获得
2023-12-25 19:41:11 2KB matlab
1
针对传统的过采样算法在增加样本的同时可能使决策域变小和噪声点增加的问题进行了研究,提出了一种基于错分的混合采样算法。该算法是以SVM为元分类器,AdaBoost算法进行迭代,对每次错分的样本点根据其空间近邻关系,采取一种改进的混合采样策略:对噪声样本直接删除;对危险样本约除其近邻中的正类样本;对安全样本则采用SMOTE算法合成新样本并加入到新的训练集中重新训练学习。在实际数据集上进行实验,并与SMOTE-SVM和AdaBoost-SVM-OBMS算法进行比较,实验结果表明该算法能够有效地提高负类的分类准确率。
1
不平衡学习:一种解决机器学习中不平衡数据集问题的Python程序包
2023-02-13 20:23:36 314KB python data-science machine-learning statistics
1
针对现实中交通正常运行状态远多于事件状态这一事实,提出了面向不平衡数据集的交通事件检测算法。运用SMOTE (Synthetic Minority Over-sampling Technique)算法重构训练集,使之平衡,以支持向量机(Support Vector Machine ,SVM)作为分类器,对交通事件进行检测。使用美国I-880高速公路获取的交通数据进行算法的训练和性能测试。结果表明,基于SMOTE-SVM的交通事件自动检测(Automatic Incident Detection , AID
2022-09-17 14:18:43 1.24MB 自然科学 论文
1
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现
2022-02-07 10:02:28 453KB 工程技术 论文
1
通过平衡数据集来提高蛋白质二级结构预测准确率
2021-12-30 20:39:29 7KB 平衡数据集
1
针对传统的机器学习算法对不平衡数据集的少类分类准确率不高的问题,基于支持向量机和模糊聚类,提出一种不平衡数据加权集成学习算法。首先提出加权支持向量机模型(Weighted Support Vector Machine,WSVM),该模型根据不同类别数据所占比例的不同,为各类别分配不同的权重,然后将WSVM与模糊聚类结合提出一种新的集成学习算法。将本文提出的算法应用于人造数据集和UCI数据集实验中,实验结果表明,所提出的算法能够有效地解决不平衡数据的分类问题,具有更好的分类性能。
2021-11-18 16:49:16 1.07MB 不平衡数据集
1
模拟实验:基于DT,RF,NB,SVM,AD的类不平衡数据集的比较¶.zip
2021-05-13 22:00:17 867KB 实验结果
1
本资源为KEEL不平衡数据集,数据集的不平衡率从1点几到几百不等,非常适合做不平衡数据分类的研究,数据集为各行各业的真实数据集。
2021-03-30 20:38:48 6.36MB imbalancedlearn imbalanceddata
1