不平衡数据加权集成学习算法

上传者: 38645373 | 上传时间: 2021-11-18 16:49:16 | 文件大小: 1.07MB | 文件类型: -
针对传统的机器学习算法对不平衡数据集的少类分类准确率不高的问题,基于支持向量机和模糊聚类,提出一种不平衡数据加权集成学习算法。首先提出加权支持向量机模型(Weighted Support Vector Machine,WSVM),该模型根据不同类别数据所占比例的不同,为各类别分配不同的权重,然后将WSVM与模糊聚类结合提出一种新的集成学习算法。将本文提出的算法应用于人造数据集和UCI数据集实验中,实验结果表明,所提出的算法能够有效地解决不平衡数据的分类问题,具有更好的分类性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明