图像分割是数字图像处理中的核心问题之一,它是将图像转换成更易于理解和分析的形式的过程,该过程涉及将图像分割成多个组成部分,使图像中的每个部分都属于一个单独的类别或对象。在交通视频监测领域,图像分割尤为重要,因为它的目标是分离出图像中的前景(移动对象)和背景,以便对交通中的车辆和行人的运动数据进行进一步分析。 图像分割技术主要有基于阈值的方法、边缘检测法、区域生长法、分水岭法等。阈值化方法因其简单高效而被广泛使用。直方图是一种重要的图像分析工具,它能显示出图像中各个灰度级的像素数量。在图像分割的背景下,直方图可以用来确定图像中的前景和背景之间的阈值。传统上,如果直方图呈现双峰形状,那么两个峰之间的谷底可以作为阈值点,用以区分背景和前景。但是,当图像受到光照变化或噪声的影响时,直方图可能不会呈现双峰形状,这时候传统的双峰谷底分割方法就无法应用。 针对差图像的直方图可能呈现递减形状的情况,本篇文章提出了一种实时自适应阈值分割方法。该方法首先对直方图的频率值进行从高到低的排序,以形成一条光滑递减的曲线。然后通过将直方图的最高点和最低点连接起来得到一条直线,从直方图上找到距离这条直线最远的点对应的灰度值,作为分割前景和背景的阈值。这种方法能够更好地适应图像中光照变化和噪声,是一种鲁棒性强的图像分割技术。 该文还提到了在计算过程中可能遇到的计算量大、速度慢的问题。为了解决这个问题,作者提出了一种快速计算最大距离的方法,有效减少了运算中的乘法次数,从而提高算法的执行速度。这种方法不仅提高了分割的准确性,同时也保证了处理的实时性,对实时视频监控中的目标检测与跟踪具有重要意义。 对于进行图像处理和Matlab仿真开发的科研人员,本文所介绍的自适应阈值方法及其快速计算算法具有很高的实用价值和参考意义。通过Matlab的仿真平台,科研人员可以进一步实验和完善这一方法,将其应用于其他图像处理任务,如图像二值化、物体识别和跟踪等,从而提升图像处理系统的性能和准确性。此外,本文作者提供的个人主页和相关链接为读者提供了丰富的Matlab图像处理内容和资源,有助于读者深入学习和实践图像分割及相关技术。文章最后还提供了获取Matlab源码的方式,方便读者在实际操作中运用所学知识。
2025-12-08 09:10:25 9KB
1
在近年来的图像处理和计算机视觉研究领域中,道路分割作为一个重要议题,一直受到广泛的关注。这是因为,通过精确的道路分割,可以有效提升自动驾驶、智能交通管理系统以及各种遥感图像分析的性能。其中,K-Means聚类算法由于其实现简单,计算效率高等特点,在道路分割任务中扮演着重要的角色。 K-Means算法是一种经典的无监督学习算法,它的基本原理是通过迭代更新簇中心和簇内样本点的方式,最小化簇内距离之和,从而达到将样本集划分为K个簇的目的。然而,当面对包含大量噪声和细节的道路图像时,传统的K-Means算法往往难以获得令人满意的分割效果。为了解决这个问题,研究者提出了在K-Means聚类前加入预处理步骤——最小梯度平滑(Minimum Gradient Smoothing,简称MSSB)的算法改进方案。 最小梯度平滑是一种有效的图像平滑技术,它通过计算图像的梯度信息,并对梯度进行抑制和平滑处理,从而减少图像中的高频噪声,保留图像中的主要边缘信息。将MSSB技术应用于K-Means算法之前,可以有效去除图像中不必要的细节和噪声,同时尽可能保留道路的边缘特征,为K-Means聚类提供更为清晰的初始数据。 在实验过程中,研究者首先对道路图像进行最小梯度平滑处理,然后将处理后的图像数据输入到K-Means算法中进行聚类分割。这种预处理与聚类相结合的方法,在实验中展现出了较为明显的分割效果提升。具体来说,通过平滑预处理的图像,K-Means算法能够更准确地识别出道路的轮廓,减少了误分割和漏分割的情况,提高了分割的准确率和稳定性。 除了实验效果的提升,本次研究还提供了一份宝贵的实验资源。该资源包含了实现最小梯度平滑预处理和K-Means聚类的道路分割算法的代码实现,以及用于实验的图像数据集。这些资源对于希望在该领域进行深入研究的学者和工程师来说,无疑是一份宝贵的财富。他们可以直接使用这些资源,进行算法的复现、比较和优化工作,从而加快道路分割技术的研究进展,推动相关领域的发展。 值得注意的是,尽管本实验通过最小梯度平滑预处理显著改善了K-Means聚类的道路分割效果,但该方法仍然存在一定的局限性。例如,对于极不规则的道路形状或是道路与背景对比度极低的情况,算法的性能可能会有所下降。因此,如何进一步提升算法在更复杂环境下的适应性和鲁棒性,将是未来研究的重要方向之一。 最小梯度平滑预处理与K-Means聚类算法相结合,为道路图像的高精度分割提供了一种有效的解决路径。通过实验验证,该方法确实能够提升分割的准确性和稳定性,同时附带的实验资源,也将为未来的相关研究提供重要的支持。随着算法的不断完善和优化,相信在不久的将来,道路分割技术将在自动驾驶和智能交通等领域发挥更大的作用。
2025-12-05 09:17:37 366.22MB kmeans
1
在当代社会,随着人工智能技术的快速发展,机器视觉在工业检测和智能监控领域发挥着越来越重要的作用。图像分割作为机器视觉中的关键技术之一,对于自动化识别和分类图像中的对象和区域至关重要。尤其是在建筑物安全检测方面,能够准确地识别出砖块、地板和墙面裂缝,对于预防事故和维护建筑物的完整性具有重大意义。 本数据集是实验室自主研发并标注的,专注于裂缝识别的图像语义分割任务,其中包含了大量高质量的裂缝图像和对应的二值mask标签。语义分割是指将图像中每个像素划分到特定的类别,从而得到图像中每个对象的精确轮廓。在这个数据集中,每张图片都对应着一个二值mask,其中白色的像素点表示裂缝的存在,而黑色像素点则表示背景或其他非裂缝区域。通过这种标注方式,可以让计算机视觉模型更好地学习和识别裂缝的形状、大小和分布特征。 数据集的规模为9495张图片,这为机器学习模型提供了丰富的训练材料,从而可以提高模型对裂缝识别的准确性和泛化能力。由于标注质量高,数据集中的裂缝图像和二值mask标签高度一致,这有助于减少模型训练过程中的误差,提升模型的性能。数据集涵盖了红砖裂缝、地板裂缝和墙面裂缝三种不同类型,因此可以被广泛应用于多种场景,如桥梁、隧道、道路、房屋和其他基础设施的检查。 该数据集不仅适用于学术研究,比如博士毕业设计(毕设)、课程设计(课设),还可以被广泛应用于工业项目以及商业用途。对于学习和研究图像处理、计算机视觉、深度学习的学者和工程师来说,这是一份宝贵的资源。它可以帮助研究人员快速构建和验证裂缝识别模型,同时也为相关领域的商业应用提供了便利。 该数据集为计算机视觉领域提供了重要的基础资源,有助于推动裂缝检测技术的发展和创新,对于提高建筑物安全检测的自动化水平具有重要的实用价值。随着技术的进步,相信这些数据将会在智能城市建设、工业安全监控以及自动化灾害预防等领域发挥越来越大的作用。
2025-11-22 10:43:56 726MB 数据集
1
CardiacUS-Septum 是一个专注于心脏超声图像中室间隔(Interventricular Septum)分割的公开数据集,包含 3,092张 高质量心脏超声切面图像及对应的LabelMe格式标注文件。本数据集旨在促进医学图像分割算法的研究,特别是心脏结构的自动识别与分析。 关键特性 数据量:3,092张心脏超声图像(.jpg格式) 标注格式:标准LabelMe JSON格式(兼容主流分割工具) 标注类别:单类别(室间隔,标签名:IVS) 图像来源:多中心采集(已脱敏处理,去除患者隐私信息) 适用场景:医学图像分割、超声影像分析、AI辅助诊断
2025-11-20 14:51:53 48.73MB 数据集
1
内容概要:本文介绍了基于灰狼优化算法(GWO)优化的二维最大熵(2DKapur)图像阈值分割技术。该方法通过模拟灰狼的狩猎行为,在搜索空间中快速找到使二维熵最大的阈值对,从而提高图像分割的准确性和效率。文中以经典的lena图像为例,展示了如何在MATLAB中实现这一过程,包括图像读取、均值滤波、定义二维阈值空间、计算熵以及最终的阈值分割步骤。 适合人群:从事图像处理研究的技术人员、研究生及以上学历的学生,尤其是对优化算法和图像分割感兴趣的读者。 使用场景及目标:适用于需要高精度图像分割的应用场景,如医学影像分析、遥感图像处理等领域。目标是通过结合GWO算法和二维最大熵方法,提升图像分割的效果和效率。 其他说明:未来可以进一步探索将其他优化算法应用于阈值分割中,以实现更加高效的图像处理。此外,文中提供的MATLAB代码示例为读者提供了实际操作的基础。
2025-11-20 09:48:02 383KB
1
内容概要:本文详细记录了DINOv3模型的测试过程,包括预训练模型的下载、环境配置、模型加载方式以及在不同下游任务(如图像分类、目标检测、图像分割)中的应用方法。重点介绍了如何冻结DINOv3的backbone并结合任务特定的头部结构进行微调,同时对比了PyTorch Hub和Hugging Face Transformers两种主流模型加载方式的使用场景与优劣,并提供了显存占用数据和实际代码示例,涵盖推理与训练阶段的关键配置和技术细节。; 适合人群:具备深度学习基础,熟悉PyTorch框架,有一定CV项目经验的研发人员或算法工程师;适合从事视觉预训练模型研究或下游任务迁移学习的相关从业者。; 使用场景及目标:①掌握DINOv3模型的加载与特征提取方法;②实现冻结backbone下的分类、检测、分割等下游任务训练;③对比Pipeline与AutoModel方式的特征抽取差异并选择合适方案;④优化显存使用与推理效率。; 阅读建议:此资源以实操为导向,建议结合代码环境边运行边学习,重点关注模型加载方式、头部设计与训练策略,注意版本依赖(Python≥3.11,PyTorch≥2.7.1)及本地缓存路径管理,便于复现和部署。
2025-11-13 17:29:00 679KB PyTorch 图像分割 目标检测 预训练模型
1
在IT领域,文件管理和处理是日常工作中的重要环节。有时候,我们可能需要处理非常大的文件,例如大型的数据库备份、高清视频或大型文档。在这种情况下,文件分割和合并工具就显得非常实用。`hjsplit`是一款这样的工具,专门用于将大文件分割成更小的部分,便于存储、传输或分发,同时也能轻松地将这些部分重新合并回原始文件。本文将详细介绍`hjsplit`的使用方法以及与之相关的`emerge`命令。 `hjsplit`是一款开源的文件分割软件,它支持在多种操作系统上运行,包括Windows、Linux和Mac OS。它的主要功能是将一个大文件拆分为多个小文件,每个小文件的大小可以根据用户的需求自定义。这在处理大文件时非常有用,因为大文件可能超出某些存储设备的容量限制,或者在网络上传输时会遇到速度和稳定性问题。通过`hjsplit`,我们可以将大文件拆分成可管理的小块,便于分批操作。 使用`hjsplit`的过程相当简单。在提供的压缩包文件中,我们看到有两个文件:`hjsplit.exe`和`readme.txt`。`hjsplit.exe`是程序的执行文件,`readme.txt`通常包含了软件的使用指南和相关信息。要使用`hjsplit`,我们需要先解压文件,然后在命令行环境中运行`hjsplit.exe`。在命令行中,我们将指定要分割的文件和希望每部分的大小(如果适用)。例如,要将名为`largefile.txt`的文件分割成50MB的块,我们可以输入: ``` hjsplit -s 50M largefile.txt ``` 这将创建一系列以原文件名加序号命名的文件,如`largefile.txt.001`,`largefile.txt.002`等。 在目标机器上,如果需要将这些分割的文件合并回原文件,同样使用`hjsplit`,但无需指定大小参数,只需指定输出文件和所有部分文件。例如: ``` hjsplit -r largefile.txt.001 largefile.txt.002 ... output.txt ``` 这里,`output.txt`将是合并后的文件名。 至于`emerge`,它是Gentoo Linux发行版中的包管理器。`emerge`允许用户安装、升级和管理软件包。如果在Gentoo系统中需要安装`hjsplit`,可以使用`emerge`命令: ``` emerge hjsplit ``` 这将自动下载、编译并安装`hjsplit`及其依赖项。 总结起来,`hjsplit`是一款强大的文件分割工具,能够帮助用户处理大文件,而`emerge`则是Gentoo Linux系统中的包管理利器,两者结合,使得在Linux环境中对大文件的管理变得更加便捷。了解并熟练使用这些工具,对于日常的IT工作无疑会带来很大的便利。
2025-11-10 22:40:10 168KB file split emerge
1
岩石薄片是一种通过切割和磨制岩石样本制成的薄片,常用于地质学研究和岩石显微结构的观察。这种薄片可以放在显微镜下进行详细的微观分析,从而对岩石的矿物成分、结构、构造等进行细致研究。利用岩石薄片可以观察到岩石的微观世界,这对于理解岩石形成、演化过程以及寻找和评估矿产资源具有重要的科学价值和实际应用意义。 语义分割是一种图像处理技术,用于识别数字图像中的每个像素点并将其分配给特定的类别或标记。在岩石薄片图像分析中,语义分割可以帮助识别和区分不同的矿物成分、孔隙、裂缝等,这对于岩石学研究至关重要。通过将图像分割为具有明确语义的区域,研究者可以获得岩石微观结构的精确信息,如矿物分布模式、岩石纹理特征等。 SAM,即语义分割算法模型,是一种人工智能技术,它可以通过训练识别图像中不同对象的边界和形状,从而实现对图像的精确分割。在岩石薄片分析中,SAM模型可以被训练来识别岩石中的矿物颗粒、胶结物、孔隙空间等不同的组成部分,通过这种方式,岩石薄片的微观图像可以被有效地转化为可供分析和研究的数据。 岩石薄片数据及标签-语义分割的研究,涵盖了岩石学、矿物学、图像处理和机器学习等多个学科领域。通过对岩石薄片图像进行精确的语义分割,研究者能够更深入地了解岩石的微观结构和成分分布,为地质学研究和资源评估提供有力的工具。这种分析技术不仅提高了研究效率,也扩大了研究的深度和广度,对地质科学的发展具有重要的推动作用。
2025-11-10 10:28:45 175.67MB 语义分割
1
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 Luna16数据集是三维的,而YOLOv3主要用于二维图像检测,因此无法直接处理该数据集。为了使用YOLOv3进行肺结节检测,需要先将Luna16数据集的三维图像转换为二维图像,并将标注数据生成对应的.xml文件。以下是相关操作的说明: 数据预处理: 使用getDataCsv.py脚本将Luna16数据集的三维图像转换为二维图像,并生成对应的.xml标注文件。 使用getImg.py脚本完成肺实质分割,提取出肺部区域的图像。 使用getMat.py脚本对疑似肺结节进行切割,生成包含肺结节的二维图像块(.mat文件)。 注意事项: 原始的getMat.py和traindataset.py脚本存在错误(有bug)。具体问题及修复方法已在CSDN博客文章《实战:使用Pytorch搭建分类网络(肺结节假阳性剔除)》中详细说明。由于CSDN无法修改已上传的资源,建议参考上述博客文章中的修正内容,以确保数据处理和模型训练的正确性。 通过上述步骤,可以将Luna16数据集转换为适合YOLOv3进行肺结节检测的格式,同时修复相关脚本中的错误,确保数据处理的准确性和模型训练的可靠性。
2025-11-05 17:40:12 338B Luna16数据集 VOC数据集
1
"Labview YOLOv8模型集成:多任务处理、快速推理与灵活调用的深度学习框架",labview yolov8分类,目标检测,实例分割,关键点检测onnxruntime推理,封装dll, labview调用dll,支持同时加载多个模型并行推理,可cpu gpu, x86 x64位,识别视频和图片,cpu和gpu可选,只需要替模型的onnx和names即可,源码和库函数,推理速度很快,还有trt模型推理。 同时还有标注,训练源码(labview编写,后台调用python) ,核心关键词: labview; yolov8分类; 目标检测; 实例分割; 关键点检测; onnxruntime推理; 封装dll; labview调用dll; 多模型并行推理; cpu gpu支持; x86 x64位; 识别视频和图片; 替换模型; 源码和库函数; 推理速度快; trt模型推理; 标注; 训练源码。,多模型并行推理框架:LabVIEW结合Yolov8,支持视频图片识别与标注
2025-11-03 19:57:52 651KB paas
1