Neural-Scene-Flow-Fields:PyTorch实施论文“用于动态场景的时空视图合成的神经场景流场”

上传者: 42109639 | 上传时间: 2022-10-30 00:04:06 | 文件大小: 35.23MB | 文件类型: ZIP
神经场景流场 PyTorch实施的论文“用于动态场景的时空视图合成的神经场景流场”,CVPR 2021 所发布的实现与当前的ArXiv略有不同。 我们将在三月底之前将ArXiv更新为CVPR摄像机就绪版本,以完全匹配已发布代码的发现。 相依性 该代码已使用Python3,Pytorch> = 1.6和CUDA> = 10.2进行了测试,相关性包括 configargparse matplotlib OpenCV scikit图像 科学的 杯状的 图像。 tqdm 视频预处理 从下载nerf_data.zip,该示例输入视频具有SfM摄像机的姿势和从估计的内在函数(请注意,您需要使用COLMAP“ colmap image_undistorter”命令来使输入图像失真,以获取“密集”文件夹,如示例中所示,该文件文件夹应包含“图片”和“稀疏”文件夹)。 从下载单视图深度预测模型“ m

文件下载

资源详情

[{"title":"( 60 个子文件 35.23MB ) Neural-Scene-Flow-Fields:PyTorch实施论文“用于动态场景的时空视图合成的神经场景流场”","children":[{"title":"Neural-Scene-Flow-Fields-main","children":[{"title":"nsff_scripts","children":[{"title":"models","children":[{"title":"transforms.py <span style='color:#111;'> 6.63KB </span>","children":null,"spread":false},{"title":"blocks.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 355B </span>","children":null,"spread":false},{"title":"midas_net.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"extractor.py <span style='color:#111;'> 8.64KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 9.03KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"update.py <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"corr.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"raft.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"flow_viz.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"augmentor.py <span style='color:#111;'> 8.89KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"flow_viz.cpython-36.pyc <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"utils.cpython-36.pyc <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 105B </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"frame_utils.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"run_midas.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"flow_utils.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"colmap_read_model.py <span style='color:#111;'> 12.96KB </span>","children":null,"spread":false},{"title":"save_poses_nerf.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"download_models.sh <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"alt_cuda_corr","children":[{"title":"setup.py <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"correlation.cpp <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"correlation_kernel.cu <span style='color:#111;'> 10.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_flows_video.py <span style='color:#111;'> 16.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"nsff_exp","children":[{"title":"models","children":[{"title":"networks_basic.py <span style='color:#111;'> 7.67KB </span>","children":null,"spread":false},{"title":"dist_model.py <span style='color:#111;'> 11.16KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"pretrained_networks.py <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"v0.0","children":[{"title":"alex.pth <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"vgg.pth <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"squeeze.pth <span style='color:#111;'> 9.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"v0.1","children":[{"title":"alex.pth <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"vgg.pth <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"squeeze.pth <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"softsplat.py <span style='color:#111;'> 14.07KB </span>","children":null,"spread":false},{"title":"load_llff.py <span style='color:#111;'> 14.80KB </span>","children":null,"spread":false},{"title":"run_nerf_helpers.py <span style='color:#111;'> 21.01KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 15.69KB </span>","children":null,"spread":false},{"title":"render_utils.py <span style='color:#111;'> 46.34KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"config_balloon1-2.txt <span style='color:#111;'> 576B </span>","children":null,"spread":false},{"title":"config_dynamicFace-2.txt <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"config_skating-2.txt <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"config_truck2.txt <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"config_umbrella.txt <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"config_balloon2-2.txt <span style='color:#111;'> 576B </span>","children":null,"spread":false},{"title":"config_kid-running.txt <span style='color:#111;'> 597B </span>","children":null,"spread":false},{"title":"config_playground.txt <span style='color:#111;'> 576B </span>","children":null,"spread":false},{"title":"config_jumping.txt <span style='color:#111;'> 570B </span>","children":null,"spread":false}],"spread":true},{"title":"run_nerf.py <span style='color:#111;'> 33.06KB </span>","children":null,"spread":false},{"title":"poseInterpolator.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"Q_Slerp.py <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"demo","children":[{"title":"ti.gif <span style='color:#111;'> 9.30MB </span>","children":null,"spread":false},{"title":"sti.gif <span style='color:#111;'> 20.17MB </span>","children":null,"spread":false},{"title":"vi.gif <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 7.18KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明