大数据-算法-非参数回归模型的Bayes估计方法及其应用研究.pdf
2022-05-03 09:07:37 2.78MB 算法 文档资料 big data
大数据-算法-非参数回归模型的变窗宽局部线性估计及其统.pdf
2022-05-03 09:07:36 1.08MB 算法 big data 回归
大数据-算法-非参数回归模型中的核估计.pdf
2022-05-03 09:07:36 1.31MB 算法 big data 回归
matlab多元参数非线性回归模型代码很棒的社区检测研究论文 包含实施的社区检测文件的集合。 关于,,和具有实现的论文的相似集合。 目录 因式分解 用于图聚类的Gromov-Wasserstein分解模型(AAAI 2020) 徐洪腾 具有自动聚类的图形嵌入(ASONAM 2019) Benedek Rozemberczki,Ryan Davies,Rik Sarkar和Charles Sutton 一致性遇到不一致:用于多视图集群的统一图学习框架(ICDM 2019) 梁有为,黄东和王昌东 GMC:基于图的多视图聚类(TKDE 2019) 王浩,杨艳,刘冰 基于嵌入的Silhouette社区检测(Arxiv 2019) 布拉兹·斯克里(BlažŠkrlj),扬·克拉里(Jan Kralj),纳达·拉夫拉奇(NadaLavrač) 知识图增强社区检测和表征(WSDM 2019) Shreyansh Bhatt,Swati Padhee,Amit Sheth,Keke Chen,Valerie Shalin,Derek Doran和Brandon Minnery 离散最优图聚类(IEEE
2022-04-22 21:28:13 273KB 系统开源
1
数据科学 机器学习系列5 利用Scikit-learn构建回归模型:准备和可视化数据.ipynb
2022-04-19 19:07:47 26KB scikit-learn 机器学习 回归 python
1
机器学习系列4 使用Python和Scikit-Learn回归模型.ipynb
2022-04-18 09:08:15 39KB scikit-learn python 机器学习 回归
1
LogisticRegression_LeadScoring 问题陈述: 一家名为X Education的教育公司向行业专业人士出售在线课程。 在任何一天,许多对课程感兴趣的专业人士都会在他们的网站上登陆并浏览课程。 现在,尽管X Education获得了很多潜在客户,但其潜在客户转换率却非常低。 例如,如果说他们一天之内获得100个销售线索,那么其中只有大约30个被转换。 为了使此过程更有效率,该公司希望确定最有潜力的潜在客户,也称为“热门潜在客户”。 如果他们成功地识别出这组潜在客户,则潜在客户转换率应该会上升,因为销售团队现在将更多地专注于与潜在潜在客户进行沟通,而不是打电话给每个人。 X Education已任命您帮助他们选择最有希望的潜在客户,即最有可能转化为付费客户的潜在客户。 公司要求您建立一个模型,在该模型中,您需要为每个潜在客户分配潜在客户得分,以使潜在客户得分较
2022-04-13 14:08:06 1.68MB python machine-learning lead logistic-regression
1
1、广义线性回归 广义线性模型有三个组成部分: (1) 随机部分, 即变量所属的指数族分布 族成员, 诸如正态分布, 二项分布, Poisson 分布等等. (2) 线性部分, 即 η = x⊤β. (3) 连接函数 g(µ) = η。 R 中的广义线性模型函数glm() 对指数族中某分布的默认连接函数 是其典则连接函数, 下表列出了 R 函数glm() 所用的某些指数族分布的 典则连接函数. 2、0-1因变量的回归模型 对于因变量为0,1变量的问题,可以考虑两种模型来解决 经过Probit变换和Logit变换,两种模型可以写成: 多变量情况: logit回归 probit回归 3
2022-04-11 15:27:57 257KB bit gi git
1
多元线性回归模型检验方法-附件资源
2022-04-10 05:17:52 106B
1
研一机器学习作业,线性回归模型
2022-04-06 14:09:13 38.36MB 机器学习 线性回归 人工智能 算法