逻辑回归 此存储库包含我对Logistic回归的实现,以及将其应用于不同数据集的示例,并解释了有关数据预处理步骤和学习算法行为的每个示例。 。 。 在完成了由Andrew Ng教授的deeplearning.ai的神经网络和深度学习课程之后,我制作了此回购协议,将logistic回归应用于不同的数据集,以更好地理解算法及其工作原理。 在Coursera上, 。 什么是逻辑回归? Logistic回归是一种用于二进制分类问题的监督学习技术,其中数据集包含一个或多个确定二进制结果(0或1)的独立变量。 在逻辑回归分类器中,您可能想要输入描述单个数据行的特征的特征向量X,并且要预测二进制输出值0或1。 更正式地说,给定输入向量X,您要预测y_hat,它是一个输出向量,描述给定特征向量X y = 1的概率, y_hat = p(y = 1 / X) 。 例如: 您有一个输入向量X,其特征是
2025-06-08 12:33:03 283KB machine-learning pandas python3 kaggle
1
这个文件是对python sklearn库里面的Logistic Regression模型的参数解释。
2023-12-04 20:30:36 99KB sklearn logistic regression
1
地下水是最大的资产之一。 地下水的持续下降是影响经济社会发展的关键因素之一。 根据可用性,将对水进行开采。 人口增长和新出现的气候变化导致水资源短缺问题。 这将增加对地下水的需求。 但是地下水分布不均。 在我们提出的系统中,我们规定了可供将来使用的年度地下水可用量。 它可以通过机器学习算法进行分类,例如逻辑回归,随机森林和决策树。 用于建模的输入变量基于各个季节的补水量和用水量。 回归任务需要较少的训练数据集,并且可以实现良好的性能。 本文的目的是对地下水位的机器学习算法及其准确性进行比较和分析。 本文使用机器学习算法对印度的地下水可用水平进行分类和检测。
2023-10-10 10:36:15 463KB Ground water Logistic regression
1
逻辑回归matlab 代码 2018-MLSP-sparse-bayesian-logistic-regression Matlab code to reproduce some of the results of the paper. Maxime Vono, Nicolas Dobigeon, Pierre Chainais, , Proc. of MLSP, 2018. Copyright Copyright (c) 2018 Maxime Vono.
2023-04-20 19:24:57 40.57MB 系统开源
1
logistic_regression:使用Python和Numpy从头开始进行Logistic回归
1
项目3:多分类 作者:Khyatee Desai和David Shin 概述 Spotify一直在寻求创建其他功能和播放列表,以使用户发现来自不同流派和时代的新歌手。 新增内容可能会导致现有用户续订该应用程序的每月订阅,并希望扩展其音乐种类。 以下分析旨在证明音乐可以根据其音乐属性所源自的时间段进行分类。 通过类型分类发现新歌手不仅使用户受益,而且使歌手和Spotify受益。 未知的艺术家将从更多的发现方法中受益,Spotify可能获得更多的收入和更多的数据。 业务问题 要开发最佳功能和播放列表,我们需要了解在按时间段对音乐进行分类时哪些功能最重要。 创建新功能可能会推动客户续订并吸引新用户的兴趣。 数据 我们使用的主要数据集包含1921-2020年间歌曲属性。 Spotify数据包含每个轨道的音频功能,如下所示: 钥匙 值类型 值说明 duration_ms 整型 轨道的持续时间(以
2022-11-15 21:05:39 31.67MB spotify random-forest xgboost logistic-regression
1
吴恩达机器学习 logistics regression jupyter note版本编程作业 机器学习与数据挖掘
2022-10-09 18:07:04 718KB 机器学习 逻辑回归 数据挖掘
1
能够让你自学Logistic Regression 的参考书
2022-09-28 14:20:19 11.61MB logistic regression
1
逻辑回归-java Logistic Regression Java 类,可用于单个或多个逻辑回归分析。 通过计算所使用的每个预测变量的优势比和 logit 来估计 beta 系数。
2022-08-06 16:51:50 3KB Java
1
logistic_regression 回归处理预测模型技术。 它显示了独立变量(也称为预测变量)或因变量或目标值之间的关系。 当输出为分类格式(例如yes / no,1或0,true或false,高或低)时,将进行逻辑回归。 与线性回归一样,我们获得的输出值在较大范围内,但对于分类输出,其输出值应介于1到0之间,因此,线性回归曲线应限制在1到o之间,这是使用逻辑回归执行的,为此,我们使用asigmod功能。 阈值的概念:用于确定输出值(在o和1之间)是否四舍五入以给出输出为0(低)还是1(高)。 阈值(0.5)和1之间的输出值四舍五入为1,低于阈值的值四舍五入为0。 对数似然的概念:使用线性回归的概念: 将上述值放在S型方程中: 现在,通过从伯纳利的特征中获得启发,我们找到了对数似然函数并将其微分,从而找到了梯度上升更新方程。 因此,可能性定义为: 对数似然变为:
2022-07-01 12:53:07 62KB JupyterNotebook
1