脸部检测器 从我的视频中查找详细信息:( ) 档案详细资料 Model_training.py :使用此python文件训练模型 Image_final_try :使用此文件,您可以对图像进行分类,无论其中是否有遮罩 Webcam_try.py :这个特殊的oython文件将帮助您从网络摄像头或任何视频中检测遮罩/不遮罩。 Haarcascade_frontalface_alt.xml :借助它,您可以检测面部特征。 此仓库的Github页数(( ) 要在您的终端中运行此代码,请执行以下操作: *打开您的终端 更改目录至您下载此代码的位置 如果尚未安装python3,请先安装python3! 运行python3 -m venv venv创建一个名为venv的虚拟环境。 运行source venv/bin/activate激活您的环境! 编写pip install -r re
2022-04-17 15:27:00 104KB opencv computer-vision deep-learning keras
1
在本文中,我们将讨论使用增强数据集训练DNN分类器。
1
Reinforcement Learning A Survey This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology,
2022-04-17 12:05:54 444KB 强化学习
基于python的强化学习算法Q-learning设计与实现
2022-04-17 12:05:50 6KB python 算法 开发语言
基于Jupyter Notebook与python的深度强化学习算法Deep Q Learning
2022-04-17 09:07:37 20KB python jupyter 算法 深度学习
基于python的深度强化学习算法Deep Q Learning实现
2022-04-17 09:07:36 16KB python 算法 深度学习 开发语言
深度融合网络以完成图像 介绍 深度图像完成通常无法和谐地将还原的图像融合到现有内容中,尤其是在边界区域中。 而且它常常无法完成复杂的结构。 我们首先介绍Fusion Block,用于生成灵活的alpha成分图,以组合已知区域和未知区域。 它为结构和纹理信息搭建了桥梁,因此已知区域中的信息可以自然地传播到完成区域。 使用这项技术,完井结果将在完井区域边界附近平滑过渡。 此外,融合块的体系结构使我们能够应用多尺度约束。 多尺度约束在结构一致性上大大提高了DFNet的性能。 此外,易于将这种融合块和多尺度约束应用于其他现有的深度图像完成模型。 具有特征图和输入图像的融合块供稿将以与给定特征图相同的分辨率为您提供完成结果。 更多细节可以在我们的找到 融合块的插图: 相应图像的示例: 如果您发现此代码对您的研究有用,请引用: @inproceedings{Hong:2019:DFN:3
2022-04-15 21:35:07 3.16MB deep-learning pytorch image-inpainting inpainting
1
deep+learning.pdf.zip
2022-04-15 18:13:00 55.31MB learning 机器学习 深度学习
Deep Learning(深度学习)学习笔记整理.pdf.zip
2022-04-15 18:12:57 1.75MB 深度学习 学习 机器学习 人工智能
面部吸引力预测 这是使用地标特征和gabor过滤器预测面部吸引力的存储库。 从以下获得的功能: 面部距离 面部比例 伽柏滤波器 如何运行: 首先必须通过运行generate_features.py生成所有功能 然后,您可以通过运行train.py来训练自己的模型 您可以通过运行demo.py对单个图像进行测试(在开头给出路径) 所需的库:Dlib,OpenCV,numpy,scipy,sklearn,imutils 验证结果: 演示: 请参阅下载整个数据集。
2022-04-15 13:59:31 1.24MB python machine-learning scikit-learn regression
1