卷积网络的神经科学基础-cisco2504无线控制器部署配置

上传者: 26706567 | 上传时间: 2022-04-30 16:42:16 | 文件大小: 37.32MB | 文件类型: PDF
9.10 卷积网络的神经科学基础 卷积网络也许是生物学启发人工智能的 为成功的案例。虽然卷积网络也经过 许多其他领域的指导,但是神经网络的一些关键设计原则来自于神经科学。 卷积网络的历史始于神经科学实验,远早于相关计算模型的发展。为了确定关 于哺乳动物视觉系统如何工作的许多 基本的事实,神经生理学家 David Hubel 和 Torsten Wiesel 合作多年 (Hubel and Wiesel, 1959, 1962, 1968)。他们的成就 终获 得了诺贝尔奖。他们的发现对当代深度学习模型有 大影响的是基于记录猫的单个 神经元的活动。他们观察了猫的脑内神经元如何响应投影在猫前面屏幕上精确位置 的图像。他们的伟大发现是,处于视觉系统较为前面的神经元对非常特定的光模式 (例如精确定向的条纹)反应 强烈,但对其他模式几乎完全没有反应。 他们的工作有助于表征大脑功能的许多方面,这些方面超出了本书的范围。从 深度学习的角度来看,我们可以专注于简化的、草图形式的大脑功能视图。 在这个简化的视图中,我们关注被称为 V1 的大脑的一部分,也称为初级视觉 皮层(primary visual cortex)。V1 是大脑对视觉输入开始执行显著高级处理的第一 个区域。在该草图视图中,图像是由光到达眼睛并刺激视网膜(眼睛后部的光敏组 织)形成的。视网膜中的神经元对图像执行一些简单的预处理,但是基本不改变它 被表示的方式。然后图像通过视神经和称为外侧膝状核的脑部区域。这些解剖区域 的主要作用是仅仅将信号从眼睛传递到位于头后部的 V1。 卷积网络层被设计为描述 V1 的三个性质: 1. V1可以进行空间映射。它实际上具有二维结构来反映视网膜中的图像结构。例 如,到达视网膜下半部的光仅影响 V1 相应的一半。卷积网络通过用二维映射 定义特征的方式来描述该特性。 2. V1 包含许多简单细胞(simple cell)。简单细胞的活动在某种程度上可以概括

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明