主泵是核电厂非常重要的设备,它直接关系到整个核动力装置能否安全运行,对其进行有效的故障诊断十分必要。支持向量机(SVM)具有使用较少的训练样本达到较好分类效果、不需要故障分类的先验知识的特点,可以应用于主泵的故障诊断。为此,首先使用小波变换提取某主泵的转子质量不平衡、转子不对中、碰摩等-Z-种典型故障的故障信息,然后使用最小二乘支持向量机(LS SVM)方法对故障模型进行训练,最后对训练得到的模型进行故障诊断。诊断结果较好,从而验证了该方法的有效性。
2022-03-08 17:54:01 2.45MB 工程技术 论文
1
动画化神经网络的优化轨迹 loss-landscape-anim允许您在神经网络的损耗格局的2D切片中创建动画优化路径。 它基于 ,如果要添加自己的模型,请遵循其建议的样式。 请查看我的文章以获取更多示例和一些直观说明。 0.安装 从PyPI: pip install loss-landscape-anim 从源头上讲,您需要。 克隆此存储库后,请运行以下命令以安装依赖项。 poetry install 1.基本范例 使用提供的和默认的多层感知器MLP模型,您可以直接调用loss_landscape_anim来获得示例动画GIF,如下所示: # Use default MLP model and sample spirals dataset loss_landscape_anim ( n_epochs = 300 ) 注意:如果您在笔记本电脑上使用它,请不要忘记在顶部包括以
2022-03-08 16:47:18 73.14MB pytorch pca neural-nets pytorch-lightning
1
Kaggle-EEG:使用机器学习从EEG数据中预测癫痫发作。 KaggleUni墨尔本癫痫发作预测比赛第三名
2022-03-08 15:28:40 764KB machine-learning matlab svm kaggle
1
支持向量机SVM和核函数的matlab程序集
2022-03-06 23:16:57 455KB matlab
1
是高级统计学的题,用MATLAB进行运算的代码,里面涉及主成分分析、聚类分析、SVM拟合、SVM分类.
2022-03-06 14:08:20 610KB 主成分分析 SVM 聚类
1
半监督的svm 数据科学分配解决方案。 使用支持向量机作为基础分类器的半监督分类器的实现。 该数据集是在代码中随机生成的。 依存关系: 麻木 斯克莱恩 分类问题 给定数据: 大量未标记的数据 少量标注数据 能够正确标记未标记数据集中任何样本的人类专家,其费用与新标记样本的数量成正比 目标: 降低成本 提高分类器的准确性 解决方案 该解决方案将具有最高置信度的预测标签添加到标签数据集中。 置信度最低的标签表明分类器需要人工专家的帮助。 这些真实的标签将添加到数据集中,并且成本会增加。 人类专家的提示数量不能超过标记样本的初始数量-标记数据的数量只能加倍。 如果准确性为100%,成本达到先前说明的限制或没有将任何样本添加到标记的数据集中,则算法终止。 例子 设置: 数据集:10000个样本,3个类,每个类2个类,3个信息性特征。 最大限度。 迭代次数:100 数据集中未标记数据的
2022-03-06 11:48:49 2KB Python
1
非线性SVM分类器设计,不同核函数下的样本数据分类图,matlab代码简单易懂
2022-03-05 19:54:47 236KB 相关向量机
1
由于风电存在着不确定性,风电功率预测对于接入大量风电的电力系统意义重大。为了提高风电功率的预测精度,本文建立了基于经验模式分解法(EMD)与支持向量机(SVM)的复合预测模型。考虑到风力机组的输出有很强的非线性,该模型首先将训练数据按风速大小分成高、中、低3组,然后对各组的风电功率样本序列进行经验模式分解,并建立各个频带分量的支持向量机预测模型,各模型的预测结果等权求和即得到最终的功率预测值。使用风电场现场采集数据的预测结果,验证了该方法的可行性和有效性。
2022-03-05 16:32:37 628KB 自然科学 论文
1
SVM案例(包括数据集)
2022-03-05 16:12:49 732KB SVM 分类模型
1