本示例旨在提出将卷积神经网络(CNN)与递归神经网络(RNN)相结合的概念,以根据以前的月份预测水痘病例数。 CNN是用于特征提取的出色网络,而RNN已证明其具有预测序列间序列值的能力。 在每个时间步,CNN都会提取序列的主要特征,而RNN会学习预测下一时间步的下一个值。 如果您认为这对您有帮助,请对它做出评价。 谢谢你。
2021-08-23 10:28:57 566KB matlab
1
时间序列分析模型精讲;
2021-08-22 13:06:44 1.28MB 数据分析 业务分析 r语言 电子商务
内容推荐 预测是作决策、规划之前的必不可少的重要环节 ,是科学决 策、规划的重要前提。混沌时间序列预测是预测领域 内的一个重 要研究方向。基于小波和人工神经网络的混沌时间序 列预测研究 是近几年来的研究热点,受到了特别的重视。小波神 经网络是结 合小波变换理论与人工神经网络的思想而构造的一种 新的神经网 络模型,它结合了小波变换良好的时频局域化性质及 神经网络的 自学习功能,因而具有较强的逼近能力和容错能力。 自从小波神 经网络被提出以后,它在非线性函数或信号逼近、信 号表示和分 类、系统辨识和动态建模、非平稳时间序列预测与分 析等许多领域 中被较为广泛地应用。尽管如此,将小波和人工神经 网络理论应 用到预测还有许多不尽如人意和有待进一步研究的地 方,还有很 大的研究余地。姜爱萍编著的《混沌时间序列的小波 神经网络预测方法及其优化研究》对此进行了深入分 析和研究,主要研究了小 波神经网络的构造、学习和优化以及小波神经网络在 混沌时间序 列预测中的应用,构建了适应于混沌时间序列短期预 测的模型,并 将其应用于中国股票价格预测。《混沌时间序列的小 波神经网络预测方法及其优化研究》主要研究成果与 创新点分述 如下: (1)用混沌理论及其分析方法对非线性时间序 列进行了研 究,为混沌时间序列的短期预测性提供了理论基础。 并以上证综 合指数为例,通过对其进行相空间重构,反映了股指 序列具有吸引 子结构。同时,对股指序列进行了确定性检验,求取 最大李雅普诺 夫指数。根据最大李雅普诺夫指数,确定了上证综合 指数序列具 有混沌特性,这为探求股指变化规律和正确建立其短 期预测模型 奠定了基础。 (2)从小波神经网络构造理论出发,详细介绍 了小波神经网 络的数学基础和性质,对目前广泛应用的四种小波神 经网络的结 构进行了深入分析,根据网络算法、逼近细节能力、 包含频域信息 广等方面因素,提出多分辨小波神经网络更适合混沌 时间序列预 测,因为多分辨小波神经网络既能逼近混沌时间序列 的整体变化 趋势,又能捕捉细节的变化。 (3)利用相空间重构技术,把消噪后得到的状 态矢量作为多 分辨小波神经网络的多维输入,构建了多维多分辨小 波神经网络 预测模型,将其应用于混沌时间序列预测,并给出了 实现方法。针 对多分辨小波神经网络提出了BP和多分辨率学习组合 算法,解 决了传统学习算法网络隐层节点数难以确定的问题, 克服了BP 网络单尺度学习算法很难学习复杂的时间序列的不足 。以上证综 合指数为例,分别采用具有相同结构的MRA—WNN和 RBF_ VJNN预测模型对股价时序进行预测,仿真结果表明, 多分辨小波 神经网络具有较高的预测精度。 (4)给出了小波神经网络的优化的两类非单调 的方法。一类 是非单调的滤子方法,并且证明了该算法是全局收敛 到一阶临界 点。这个算法不同于传统的滤子信赖域方法,因为它 使用了试探 步的切向和法向的分解;也不同于Gould提出的非单 调方法,因为 本书提出的非单调性更为松弛。这使得在不引入二阶 校正步的情 况下改进了滤子方法。同时也不再定义支配区域的边 界,而直接 使用面积,这样也相应简化了算法。另一类是非单调 的无罚函数 方法,该方法利用非单调线搜索和对于约束违反度函 数的可行性 恢复阶段来达到目标函数和约束违反度函数之间的平 衡,而非单 调的方法在M一1时是等价于单调方法的,非单调方法 从M步看 来仍然是单调的。当然,在这种方法中,也可以采用 试探步分解的 技术,然后利用滤子来做接受性的检验。进一步地, 我们还可以将 非单调的滤子方法推广到一般的约束最小化问题之中 ,数值结果 表明这种方法也是可执行的且是有效的,并用此两种 方法作为训 练小波神经网络的优化新算法。 (5)提出将无罚函数方法与非线性互补问题相 结合用于小波 神经网络的优化,将互补问题转化为约束优化问题, 应用约束优化 问题的策略和技巧对其求解,融入无罚函数的概念, 并得到了算法 的收敛性。同时,其数值结果也表明这类算法和同类 的其他方法 比起来更为灵活,且具有更好的数值效果。 (6)提出基于修正的SQP滤子方法的小波神经网 络的优化, 修正了序列二次规划子问题,使得二次规划子问题在 每个迭代处 总是可解的,同时不用线搜索,提出了修正的滤子方 法。另外,引 入积极集策略,减小运算量。当第一次得到的搜索方 向不被滤子 接受时,不是直接舍弃它,而是转而以这个方向为基 础,构造另一 个可行下降的搜索方向。并在此基础上加入了线搜索 ,得到了带 线搜索的滤子方法,其数值结果也说明基于修正的 SQP滤子方法 的小波神经网络的优化是有效的。 (7)提出基于新的无罚函数方法的小波神经网 络的优化
2021-08-22 11:53:02 18.3MB 时间序列 小波神经网络
1
如何预测序列?看这份IJCAI2021亚马逊《大时间序列预测》教程,附301页Slides 时间序列预测是商务流程自动化和优化的关键因素。在零售领域,决定订购哪些产品以及将它们存储在哪里取决于对不同地区未来需求的预测; 在云计算中,对服务和基础设施组件未来使用量的估计指导容量规划;仓库和工厂的劳动力调度需要预测未来的工作量。最近几年见证了预测技术和应用的范式转变,从计算机辅助的模型和假设到数据驱动和完全自动化。这种转变可以归因于大量的可用性,丰富、多样的时间序列数据来源和导致一组需要解决的挑战,如下:我们如何建立统计模型有效地和有效地学习预测大型和多样化数据来源?在观测有限的情况下,我们如何利用“相似”时间序列的统计能力来改进预测?建立能够处理大数据量的预测系统意味着什么? 本教程的目的是为解决大规模预测问题提供一个简明直观的概述,介绍最重要的方法和工具。我们回顾了经典时间序列建模和现代方法的现状,特别关注预测的深度学习。此外,我们还讨论了预测、评价的实际方面,并提供了实例问题。我们的重点是提供一个直观的方法概述和实际问题,我们将通过案例研究说明。作为一个补充,我们通过Jupyter提供自学的交互式材料。
2021-08-21 19:13:36 31.43MB 时间序列预测
时间序列预测代码matlab
2021-08-21 16:18:19 16.92MB 系统开源
1
一种新的基于隐Markov模型的分层时间序列聚类算法.pdf
2021-08-21 13:03:21 337KB 聚类 算法 数据结构 参考文献
多元时间序列聚类算法分析.pdf
2021-08-21 09:37:17 275KB 聚类 算法 数据结构 参考文献
时间序列的贝斯叶分析方法理论及实践介绍
2021-08-20 09:18:38 5.82MB 时间序列贝斯叶
1
基于深度学习的时间序列算法综述.pdf
2021-08-20 01:40:16 1.59MB 深度学习 数据分析 数据研究 参考文献
面向临床检验指标的非同步时间序列聚类算法研究.pdf
2021-08-20 01:23:57 411KB 聚类 算法 数据结构 参考文献