image_super_resolution
一个旨在提高Image Super Resolution深度学习原理/框架/工具的项目。
参考
该项目从以下项目中复制了很多代码和构想:
网络
该模型基于RRDN和GAN。
损失和超参数
HR与SR之间产生损失L1损失
GAN损失,SR的鉴别器损失
功能损失:HR和SR通过VGG block2_conv2 / block5_conv4 L2损失,block2_conv2和block5_conv4输出的损失值处于不同级别
鉴别器损耗(真实/伪造)用于鉴别器网络
首先,不同的损失是不统一的。 其次,模型需要重量损失以达到预期效果。 超参数用于在训练发电机时平衡发电损耗,感冒损耗和壮举损耗。
2021-05-31 23:37:06
94.63MB
Python
1