基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,含风电光伏光热电站电力系统N-k安全优化调度模型 关键词:N-K安全约束 光热电站 优化调度 参考文档:《光热电站促进风电消纳的电力系统优化调度》参考光热电站模型; 仿真平台: MATLAB +YALMIP+CPLEX 主要内容:代码主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。 同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。 以14节点算例系统为例,对模型进行了系统性的测试,效果良好。 ,N-K安全约束; 光热电站; 优化调度; 电力系统; 弃风弃光; 14节点算例系统,基于N-K安全约束的光热电站优化调度模型研究
2025-04-20 22:21:44 639KB 数据仓库
1
本课程设计是软件工程专业的一门核心骨干课,是本专业学生必须学习和掌握的基本专业课程。 本实践课的主要目的是:(1)、掌握运用数据库原理进行系统分析和设计的方法;(2)掌握关系数据库的设计方法;(3)掌握利用SQL Server 2000技术;(4)掌握应用程序对数据库的访问方法。
2025-04-20 15:44:45 3.75MB
1
在移动通信领域,LTE(Long Term Evolution)技术已经成为4G标准的重要组成部分,其高效的数据传输能力和灵活的资源调度策略是其关键优势。本压缩包文件包含三篇与LTE调度算法相关的学术文章,对于深入理解LTE系统及其调度机制具有重要价值。 第一篇论文名为“LTE系统中无线资源调度算法研究.kdh”,它可能详细探讨了LTE系统中如何有效地分配无线资源,以满足用户的不同需求。在LTE中,调度算法是核心部分,它决定了数据如何在时间和频率上进行分配。这些算法通常基于用户的信道条件、服务质量要求(QoS)以及系统负载进行优化。可能会涉及的调度算法有:基于最大信道质量的调度(Max CQI)、轮询调度(Round Robin)、公平调度(Proportional Fairness)等。这些算法的优缺点、性能比较和实际应用是论文的重点内容。 第二篇文档“3GPP_LTE移动通信系统的系统级仿真研究.nh”很可能涵盖了3GPP(第三代合作伙伴计划)制定的LTE规范,并通过系统级仿真对这些规范进行了验证和分析。系统级仿真可以帮助我们理解在大规模网络环境中,不同调度策略对网络性能的影响,包括吞吐量、时延、覆盖范围等关键指标。此外,仿真结果可以为优化调度算法提供依据,以提高整体网络效率。 第三篇PDF文件“SCHEDULING CLASS.pdf”可能更专注于调度分类,详细介绍了各种调度策略和它们的适用场景。例如,上下行链路的调度差异、实时与非实时业务的调度处理、多用户MIMO(Multiple-Input Multiple-Output)下的调度方法等。此外,可能还会涉及一些高级调度技术,如动态调度、预调度、基于认知的调度等,这些技术旨在提升频谱效率和用户体验。 这三篇文章结合,不仅提供了LTE调度的基本理论,还涵盖了实际应用和性能优化的研究,对于理解LTE系统运作、设计高效调度算法以及撰写相关毕业论文都提供了丰富的素材。通过深入阅读和分析,我们可以对LTE调度有更全面和深入的理解,同时也能为未来的5G网络调度提供有益的参考。
2025-04-14 11:56:18 5.26MB LTE
1
基于电力市场环境的分布式电源配电网日前两阶段优化调度模型与策略,基于电力市场环境的分布式电源配电网日前两阶段优化调度模型与策略,(1)含分布式电源的配电网日前两阶段优化调度模型,EI,如图1—3 matlab源代码,高水平文章,保证正确 在电力市场环境下,供电公司通过对接入配电网的分布式电源(distributed generation,DG)的优化调度,能够有效地降低其运行成本,规避市场竞争环境下的风险。 提出了一种电力市场环境下供电公司日前优化调度的2阶段模型:第1阶段为DG优化调度阶段,根据市场电价、DG运行成本、签订可中断负荷(interruptable load,IL)合同的价格来确定DG的机组组合、从大电网的购电量及IL削减量:第2阶段为无功优化阶段,在第1阶段的基础上,考虑DG的无功出力特性,通过优化DG和无功补偿装置的出力调节电压使其在规定的范围内且配电网的网损最小。 通过基于修改的IEEE 33节点系统的仿真计算,表明所提出的日前2阶段优化调度模型能够有效降低供电公司的运行成本。 (2)包含分布式电源的配电网无功优化 图4—6 matlab源代码,代码按照高水平文章
2025-04-13 08:57:32 2.13MB edge
1
基于Matlab的柔性车间调度系统源代码:实现机器调度并可视化甘特图与收敛曲线,基于Matlab的柔性车间调度系统源代码:机器灵活调度与甘特图及收敛曲线可视化,车间调度matlab源代码柔性车间调度,具有机器柔性,最后能生成甘特图以及收敛曲线 ,核心关键词:车间调度; MATLAB源代码; 柔性车间调度; 机器柔性; 甘特图; 收敛曲线,柔性车间调度Matlab源代码:支持机器柔性,生成甘特图与收敛曲线 在当前的制造环境中,随着生产的多样化和个性化需求的不断增加,车间调度系统的灵活性成为了提高生产效率和降低生产成本的关键因素。为了实现这一目标,研究人员和工程师们开发了基于Matlab的柔性车间调度系统。这一系统的开发,旨在通过Matlab强大的数值计算能力和丰富的图形界面,为车间调度提供一种有效的解决方案。 柔性车间调度系统的核心功能之一是能够实现机器调度。在车间生产过程中,机器的调度不仅关系到生产效率,还直接影响到生产成本和产品交货期。通过Matlab编程,系统能够根据生产任务的复杂性和紧急性,对机器进行灵活的分配和调度。这不仅提高了机器的利用率,同时也保证了生产的连续性和稳定性。 另一个重要的功能是可视化甘特图。甘特图是一种常用的项目管理工具,通过条形图的形式直观展示项目的时间进度和各个任务之间的关系。在柔性车间调度系统中,甘特图能够清晰地描绘出生产任务的执行情况,包括任务的开始和结束时间、任务之间的依赖关系等信息。这种可视化手段极大地提高了调度的透明度,帮助管理层和操作人员快速识别生产瓶颈和潜在问题。 收敛曲线是评估调度系统性能的一个重要指标。收敛曲线能够反映出调度算法在寻找到最优解或满意解的过程中,随着迭代次数的增加,解的质量是如何变化的。在Matlab环境下,研究人员可以利用各种优化算法,如遗传算法、模拟退火算法等,来不断迭代求解,直到找到一个近似最优的调度方案。收敛曲线的生成能够帮助用户了解算法的收敛速度和稳定性,进而对算法进行调整和优化。 柔性车间调度系统的源代码设计是基于Matlab平台的。Matlab作为一种高性能的数值计算和可视化软件,为机器学习、信号处理、图像处理等领域提供了广泛的工具箱和函数库。在柔性车间调度系统的开发中,利用Matlab提供的函数和工具箱,可以有效地实现数据处理、算法开发、结果可视化等多个环节的工作。 在具体的文件中,通过详细的文档说明和源码研究,可以了解到柔性车间调度系统的设计理念、实现方法和最终效果。文档中不仅包含了系统设计的理论基础和实现细节,还包括了对关键技术和算法的深入分析。源码研究部分则提供了从算法实现到结果展示的完整流程,使得其他研究人员和工程师能够基于现有的代码进一步开发和优化。 源代码展示部分则直接向用户展示了如何利用Matlab进行柔性车间调度系统的开发。包括了系统设计、算法实现、结果输出等多个环节。通过源码的展示,用户可以清晰地了解每一行代码的作用,以及如何将这些代码组织在一起,形成一个完整的柔性车间调度系统。 基于Matlab的柔性车间调度系统源代码是一个集成了机器调度、甘特图可视化和收敛曲线分析的强大工具。它不仅能够提高车间调度的灵活性和效率,还能够帮助管理者和工程师更好地理解和控制生产过程。通过可视化的手段,这一系统为车间调度提供了一个直观和高效的操作平台,是现代制造业中不可或缺的辅助工具。
2025-04-04 14:35:08 1.91MB kind
1
MATLAB环境下基于电气热耦合的综合能源系统优化调度模型详解:考虑电网、热网与气网协同优化与算法研究,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细 仿真平台:MATLAB YALMIP+cplex gurobi 主要内容:代码主要做的是一个考虑电网、热网以及气网耦合调度的综合能源系统优化调度模型,考虑了电网与气网,电网与热网的耦合,算例系统中,电网部分为10机39节点的综合能源系统,气网部分为比利时20节点的配气网络,潮流部分电网是用了直流潮流,气网部分也进行了线性化的操作处理,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均有可靠来源 ,综合能源系统; 优化调度; 电气热耦合; 耦合调度模型; 潮流计算; 直流潮流; 线性化处理; 代码质量; 注释; 模块子程序。,MATLAB仿真:电-气-热综合能源系统耦合优化调度模型
2025-03-31 21:30:25 571KB csrf
1
内容概要:本文介绍了如何使用Matlab和Yalmip工具箱构建含风电的电力系统调度模型,以应对源荷不确定性。文章详细讲解了模型中涉及的各种电力组件(如储能、风光机组、火电机组和水电机组)的变量定义及其约束条件。此外,还探讨了目标函数的构建,包括运行成本、弃风弃光成本和碳成本,并阐述了如何通过模糊机会约束处理风光出力的不确定性。最后,文章展示了如何使用Cplex或Gurobi求解器求解该优化问题,并提供了详细的代码示例和结果可视化方法。 适合人群:从事电力系统调度的研究人员和技术人员,熟悉Matlab编程环境并对优化算法有一定了解的人群。 使用场景及目标:适用于需要解决含风电电力系统调度中源荷不确定性问题的实际工程应用。主要目标是在确保系统安全的前提下,降低运行成本,减少弃风弃光现象,并优化碳排放管理。 其他说明:文章不仅提供了完整的代码实现,还深入解析了各个模块的功能和实现细节,便于读者理解和扩展。
2025-03-31 21:05:53 119KB
1