基于opencv传统数字图像处理实现车道线检测_python_c++源码+项目说明.7z 【实现方法】 实现车道线检测,主要包含两部分操作 道路图像的处理,主要包括灰度图转换、基于高斯平滑的图像去噪、基于Canny算法的边缘提取。 车道线检测方法,主要包括获取感兴趣区域(ROI)、形态学闭运算、基于Hough变换的直线检测。
2022-12-13 17:26:28 23.96MB opencv 车道线检测 c++ 项目源码
课程作业_Python+OpenCV实现车道线检测源码+项目说明.7z 【图像处理】 图像处理主要是先对图像进行灰度处理,高斯模糊,然后对其进行canny边缘检测,最后对得到的图像进行roi掩膜处理,进一步缩小范围。 【霍夫变换】 霍夫变换(Hough)是一个检测间断点边界形状的方法。它通过将图像坐标空间变换到参数空间,来实现直线与曲线的拟合。 在图像坐标空间中,经过点的直线表示为: (1) 其中,参数a为斜率,b为截矩。其中,参数a为斜率,b为截矩。 通过点 点的直线有无数条,且对应于不同的a和b值。 如果将和视为常数,而将原本的参数a和b看作变量,则式子(1)可以表示为: (2) 这样就变换到了参数平面a−b。这个变换就是直角坐标中对于点的Hough变换。 离群变换和最小二乘拟合 视频流的读写等等,更多详细说明介绍看项目说明。
2022-12-13 17:26:27 449KB opencv 车道线检测 图像处理 python
python实现基于区域二元线性回归模型进行图像恢复源码+项目说明(人工智能期末作业).7z 图像恢复 实验要求: 生成受损图像,函数接口 noise_mask_image 受损图像是由原始图像添加了不同噪声遮罩(noise masks)得到的 噪声遮罩仅包含 {0,1} 值。对原图的噪声遮罩的可以每行分别用 0.8/0.4/0.6 的噪声比率产生的,即噪声遮罩每个通道每行 80%/40%/60% 的像素值为 0,其他为 1。 使用区域二元线性回归模型,进行图像恢复。 评估误差为所有恢复图像与原始图像的 2-范数之和,此误差越小越好。 Result: 使用线性模型以 10 x 10 的区域为单位,进行像素预测,直到完成整张图片的像素预测,完成图像恢复
基于深度学习+树莓派4b实现控制小车自动驾驶项目python源码+项目详解说明.zip 【部分操作说明】 1.配置树莓派(单独配置SSH文件)使其能够实现基本的操作,如putty连接,vncviewer可视化操作,winscp传输文件等,可在软件中配置 2.准备对应得设备,如杜邦线,螺丝刀,基本的车壳, 3.配置树莓派在小车上,并利用杜邦线连接相对应的电机,这里使用的L298N电机,GPIO口对应得分别是7,11(后轮电机),13,15(前轮电机),并且将电源连接到L298N电机上,注意这里的一定要单独給电机供电,靠树莓派的电压会不够,还有就是这里的接地线,连接到GPIO口9,并与电源的负极短接。可以利用test1back.py,test2front.py进行测试。 4.配置使能端口,这里利用的是GPIO口12,16,可以根据自己的实际需要进行调整,注意拔掉L298N电机上的跳线帽连接。ps:增加使能是因为测试中发现一旦转向, 车轮不能回正因电机保持通电状态需要让电机断电从而释放动力。 等等....... 需自己拥有树莓派4b开发设备及小车配件
SJTU数字图像处理课设_传统图像处理结合yolov5算法实现电车轨道ROI区域标注及障碍物检测项目源码+项目说明.7z 【SJTU数字图像处理课程设计】 采用传统的数字图像处理方法(边缘检测,透射变换,霍夫变换等)对视频中的电车轨道进行检测和标注,并标注轨道所处的ROI区域,基于此ROI区域使用当下较为流行的YOLOv5目标检测深度学习算法进行区域内的障碍物识别与检测并将其标注。算法最终效果较好,可准确的检测两种环境(白天和夜晚)下的电车轨道并对轨道附近障碍物进行识别。算法识别效率为17FPS,效果较好。 主要任务为完成有轨电车轨道与轨道上障碍物的检测
基于机器学习的疫情大数据智能分析和可视化系统源码+项目文档.zip方案实现 数据采集: 本实验数据包含北京, 香港, 上海, 四川, 河北, 甘肃, 陕西, 辽宁, 广东, 台湾, 福建,重 庆, 浙江, 江苏, 天津, 云南, 澳门, 湖北等 34 个省份城市(含港澳台)的疫情数据,其中数据 字段包括: 读取数据 数据预处理 缺失值处理 日期转换 连续数值转换 离散数值转换 特征工程 建立模型 模型训练 模型评估 模型优化 模型实施 中国高校计算机大赛-网络技术挑战赛选拔赛阶段作品设计文档 id:数据编号 confirmedCount:累计确诊 confirmedIncr:新增确诊 curedCount:累计治愈 curedIncr:新增治愈 currentConfirmedCount:现存确诊 currentConfirmedIncr:新增现存确诊 dateid:日期 deadCount:累计死亡 deadIncr:新增死亡 suspectedCount:累计疑似 suspectedCountIncr:新增疑似 数据预处理: 1、统计数据行列数,查看部分数据,如图 1: df.sh
基于机器学习的多因子研究框架源码+项目说明.7z
2022-12-13 13:26:00 22.02MB 机器学习 多因子研究源码 多因子 python
基于机器学习的发债主体违约风险预测项目源码+项目说明.7z 【项目介绍】 该项目以发债企业作为研究对象,利用财务逻辑和技术手段对178个原始特征指标进行有效筛选,构建了基于多种机器学习算法的模型,对比后挑选LightGBM模型作为最终模型进行更精细化训练,最终模型关键预测指标均有比较好的效果。 Jupyter Notebook代码 【使用说明】 BondDefault文件为项目代码 基于机器学习的发债主体违约风险预测.pptx为ppt形式的项目展示
基于机器学习实现发电厂辅机故障预警系统源码+项目说明.7z 针对电厂辅机故障率高,传统的基于机理的模型预警不及时,经常误诊的问题,设计了基于机器学习的新型故障预警模型 面对三种不同的使用场景,分别设计了基于聚类和关联规则的预警模型、基于随机森林的预警模型、与基于多元高斯分布和人 工神经网络的预警模型 使用某电厂一次风机的实际数据进行验证,所设计的三种预警模型能够提前约60min发出预警,给电厂运行人员提供指导 除了以上的算法,还使用一分类、支持向量机、XGBoost算法等对数据进行了处理
基于PyQt5+SRnet+SSDP网络实现图像隐写分析以及隐写去除_pytorch源码+项目说明.zip 项目主要任务为实现图像隐写分析以及隐写去除,其中隐写分析采用SRNet网络模型,隐写去除采用DDSP网络模型。 ​ 项目中有4个文件夹,分别为: 0.SRNet、1.GUI、2.DDSP、3.SRNet 其中0.SRNet为图像隐写分析,使用Jessica教授的官方源码,框架为tensorflow;1.GUI为隐写嵌入以及隐写分析可视化演示系统,由PyQ5实现;2.DDSP为图像隐写去除,pytorch实现;3.SRNet为图像隐写分析,pytorch实现。其中自己复现的SRNet网络模型其性能弱于官方代码。 本项目隐写分析中使用的隐写术为: S-UNIWARD、HUGO、WOW三种图像空域隐写算法,采用的隐写嵌入率为:0.4bpp、0.7bpp和1.0bpp三种。 为了更好的演示如何实现隐写嵌入和隐写分析,使用PyQt5编写了可视化界面,调用现有的隐写术和训练好的隐写分析模型进行操作。
2022-12-07 12:27:47 7.42MB PyQt5 SRnet SSDP 图像隐写分析