支持向量机公式推导过程的ppt,有利于初学者公式的理解。通过ppt一步步演示,可以更清晰地看清每步的过程
2021-12-13 13:29:37 1.12MB 支持向量机
1
svr matlab代码下载支持向量回归 该项目是在 Matlab 中使用 LIBSVM(支持向量机库)完成的。 以下是您需要遵循的步骤,以便下载 Libsvm 并运行代码。 LIBSVM 的MATLAB 界面: 目录 • 安装(LIBSVM) • 项目执行步骤 安装 在Windows 系统上,预编译的二进制文件已经在'...\windows' 目录中,因此无需进行安装。 现在我们只为 Windows 上的 64 位 MATLAB 提供二进制文件。 如果您想重新构建包,请依赖以下步骤。 我们建议在 MATLAB 和 OCTAVE 上使用 make.m。 只需键入“make”即可构建“libsvmread.mex”、“libsvmwrite.mex”、“svmtrain.mex”和“svmpredict.mex”。 在 MATLAB 上:>> make 如果 make.m 在 MATLAB 上不起作用(尤其是对于 Windows),请尝试使用 'mex -setup' 为 mex 选择合适的编译器。 确保您的编译器可访问且可用。 然后输入'make'开始安装。 示例:matlab>> m
2021-12-13 13:26:01 1.3MB 系统开源
1
动笔写这个支持向量机(supportvectormachine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够。得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章。本文在写的过程中,参考了不少资料,包括《支持向量机导论》、《统计学习方法》及网友pluskid的支持向量机系列等等,于此,还是一篇学习笔记,只是加入了自己的理解和总结,有任何不
1
SAS 系统是世界公认的权威性统计软件之一,是一个大型集成信息分析管理系统。 本次论文是用SAS 系统对2007 各地区农村居民家庭平均每人现金现金支出状况进行分析采用的数据是北京、天津等省农村居民家庭平均每人现金现金支出状(原始数据见附录)。 选出31省的情况作为统计分析数据,其中分析的项目为:期内现金支出、生产费用支出、家 庭经营费用支出、农业生产支出、牧业生产支出、购买生产性固定资产支出、税费支出、生活消费 现金支出、财产性支出、转移性支出,次用变量X1、X2、X3、X4、X5、X6、X7、X8、X9 、X10。运用SAS 软件,运用主成分分析的方法对数据进行处理: (一)对于所选取的统计数据用MEANS 过程进行简单描述统计分析,得出数据平均值、数据标准差等。 (二)对于所选取的统计数据用INSIGHT 模块做主成分分析计算协方差矩阵的特征值或是计算相关系数矩阵的特征值(Eigenvalue )、简单统计量、相关系数矩阵、相关系数矩阵的特征值以及相关系数矩阵的特征向量。系统默认计算相关系数矩阵的特征值和特征向量。 (三)由相关系数矩阵的两个最大特征值的特征向量,可以写出第一、第二主成分以及第三主成分 的得分。从以上结论分析可以知道影响各地区地区农村居民家庭平均每人现金支出的主要因素,从、 可以更好的帮助国家调节国民经济和产业结构,使人民的生活更加富裕。
1
支持向量数据描述SVDD:使用支持向量数据描述(SVDD)进行异常检测或故障检测的MATLAB代码
2021-12-12 22:28:32 4.03MB matlab fault-detection svdd abnormal-detection
1
对支持向量机的总结,该小结是本人在阅读了大牛李航的《统计学习方法》之后做的总结,往对读者有所帮助。
2021-12-12 21:13:07 586KB SVM 支持向量机
1
matlab均方误差的代码平滑支持向量机工具箱 介绍 SSVM工具箱是Matlab中的平滑支持向量机的实现。 SSVM是传统SVM的重新构造,可以通过快速的Newton-Armijo算​​法解决。 此外,选择一个好的参数设置以在学习任务中获得更好的性能是一个重要的问题。 我们还提供自动模型选择工具,以帮助用户获得良好的参数设置。 现在,SSVM工具箱包括用于分类和自动的工具。 主要特征 解决分类()和回归()问题 支持线性,多项式和径向基核 提供带有RBF内核的SSVM和SSVR的自动模型选择 通过使用精简内核(RSVM)可以处理大规模问题 提供交叉验证评估 使用正则化最小二乘法提供零以外的替代初始点 下载SSVM工具箱 资料格式 SSVM工具箱是在Matlab中实现的。 使用可以加载到Matlab中的数据格式。 实例由矩阵(实例的行和变量的列)表示,标签(1或-1)或响应由列向量表示。 用于分类 回归 以下是一些样本数据集。 代码用法 SSVM工具箱包含三个主要功能:用于支持向量机训练的ssvm_train,用于支持向量机预测的ssvm_predict和用于自动模型选择的芙蓉。 ss
2021-12-12 20:33:32 3.13MB 系统开源
1
幂法求矩阵特征值特征向量matlab程序,但是区别于matlab自带方法。
2021-12-12 19:21:51 633B 特征值,幂法
1
资源主要提供了smo算法的框架,包括中英文,以及smo算法源代码
2021-12-11 17:57:55 608KB 支持向量机 smo算法
1
smo的matlab代码支持向量机 使用序列最小优化 (SMO) 算法进行训练的支持向量机的简单实现。 支持的python版本: Python 2.7 Python 3.4 Python包依赖 麻木 () 文档 设置模型(以下参数为默认值) from SVM import SVM model = SVM ( max_iter = 10000 , kernel_type = 'linear' , C = 1.0 , epsilon = 0.001 ) 训练模型 model . fit ( X , y ) 预测新的观察结果 y_hat = model . predict ( X_test )
2021-12-11 17:50:17 7KB 系统开源
1