该存储库代表Ultralytics对未来的对象检测方法的开源研究,并结合了在匿名客户数据集上数千小时的培训和发展过程中汲取的经验教训和最佳实践。 所有代码和模型都在积极开发中,如有更改或删除,恕不另行通知。 使用风险自负。
** GPU速度使用批处理大小为32的V100 GPU测量超过5000张COCO val2017图像的平均每张图像的端到端时间,包括图像预处理,PyTorch FP16推理,后处理和NMS。 来自EfficientDet数据(批量大小为8)。
2021年1月5日: :nn.SiLU()激活,记录, 集成。
2020年8月13日: :nn.Hardswish()激活,数据自动下载,本机AMP。
2020年7月23日: :改进了模型定义,培训和mAP。
2020年6月22日: 更新:新机头,减少了参数,提高了速度,并提高了mAP 。
2020年6月19日: 作为
1