Bulletproofs 是不需要可信设置的简短知识零知识论点。 参数系统是具有计算可靠性的证明系统。 Bulletproofs 适用于证明关于提交值的陈述,例如范围证明、可验证的 suffle、算术电路等。它们依赖于离散对数假设,并使用 Fiat-Shamir 启发式进行非交互。 Bulletproofs 的核心算法是 Groth [2] 提出的内积算法。 该算法提供了满足给定内积关系的两个绑定向量 Pedersen 承诺的知识参数。 Bulletproofs 建立在 Bootle 等人的技术之上。 [3] 引入一种有效的内积证明,将论证的整体通信复杂性降低到仅 在哪里 是承诺的两个向量的维度。 范围证明 Bulletproofs 提供了一种用于进行短范围和可聚合范围证明的协议。 它们使用多项式对内部乘积中确定数字范围的证明进行编码。 范围证明是秘密值位于某个区间的证明。 范围证明不
2021-11-15 19:31:16 276KB cryptography elliptic-curves sigma zero-knowledge
1
知识图谱综述 knowledge graph 最近18位学者共同撰写了一篇《知识图谱》综述论文,讲述了知识图谱的创建、丰富、质量评估、细化和发布的方法,有130页pdf,547篇参考文献。
2021-11-05 19:11:49 2.27MB 知识图谱
1
基于最小领域知识的主题建模 ,一种基于融合知识的主题模型的微博话题发现方法,涉及自然语言处理领域 传统的主题挖掘技术基于概率统计的混合模型,对文本信息进行建模,使得模型能够自动挖掘出文本中潜在的语义信息,使用户能够快速的了解文本中所涉及的内容。通过主题模型,不仅能够获得文本集合中主要涉及的信息,而且能够获得每篇文档中的内容信息。常见的主题模型有概率潜在语义分析(ProbabilisticLatentSemanticAnalysis,PLSA)模型[1]和潜在狄利克雷分配(LatentDirichletAllocation,LDA)模型[2]。但该类技术仅考虑文本集合中的文本信息,其他有用的信息,如文本的类别信息等,无法被利用起来。
2021-11-04 12:26:59 526KB 主题模型 Topic Modeling
1
BERT和知识提炼的问题解答 该存储库包含必要的代码,以便微调SQuAD 2.0数据集上的BERT。 此外,的技术是通过微调施加使用BERT作为教师模型小队2.0数据集。 使用Google Colab的1个Tesla V100 GPU获得了所有结果。 1.什么是SQuAD? 斯坦福问答数据集(SQuAD)是一种阅读理解数据集,由人群工作人员在一组Wikipedia文章上提出的问题组成,其中每个问题的答案是对应阅读段落或问题的一段文本或跨度可能无法回答。 SQuAD 2.0将SQuAD 1.1中的100,000个问题与超过50,000个由对抗性工作者对抗性编写的问题相结合,看起来类似于可回答的问题。 为了在SQuAD 2.0上取得出色的成绩,系统不仅必须在可能的情况下回答问题,而且还必须确定该段落何时不支持任何答案并放弃回答。 有关SQuAD数据集和当前排行榜的更多信息,您可以访问以下。
1
Mastering the game of Go without human knowledge.pdf
2021-10-19 19:23:22 3.84MB AlphaGo Zero
1
【导读】预训练模型是当下研究的热点,来自西电的研究人员发布《知识增强的预训练模型》,非常值得关注! 预训练模型通过自监督学习方法在大规模文本语料库上学习上下文化的词表示,该方法经过微调后取得了良好的性能。然而,这些模型的健壮性差,且缺乏可解释性。带有知识注入的预训练模型(knowledge enhanced pre- training model, KEPTMs)具有深刻的理解和逻辑推理能力,并在一定程度上引入了可解释性。在这个综述中,我们提供了自然语言处理的KEPTMs的全面概述。首先介绍了预训练模型和知识表示学习的研究进展。然后我们从三个不同的角度对现有KEPTMs进行了系统的分类。最后,对KEPTMs的未来研究方向进行了展望。
2021-10-08 23:19:34 1.91MB 预训练
1
知识蒸馏在文本方向上的应用 模型相关等内容在有具体介绍。 目录 更新日志 2020.08.28 整理代码结构,抛弃借鉴的Bert模型,增加xlnet模型,预训练xlnet模型效果较差,可以在模型基础上再进行预训练,因此添加了模型预训练代码。 2020.07.15 修复bug,添加textGCN模型(单独训练,模型效果较差)。 2020.07.06 移除模型介绍&部分模型实现,增加使用说明及运行环境。 2020.05.28 增加了直接使用学生模型训练代码,并使用公开测试集完成测试。 运行环境 python 3.7 pytorch 1.1 (BERT模型参考Bert-Chinese-Text-Classification-Pytorch,有较多改动) transformers 3.0.2 torch 1.5.0 使用说明 下载Wikipedia_zh 中文维基百科 预训练词向量放入Knowl
2021-10-03 16:16:24 1.11MB pytorch knowledge-distillation bert Python
1
Agricultural Knowledge Graph 由于工作原因,该项目已停止维护。因此项目代码仅供参考,项目中包含的数据可免费用于学术等非商业用途。 相关工作请引用paper: AgriKG: An Agricultural Knowledge Graph and Its Applications[C]. DASFAA (3) 2019: 533-537 项目介绍: 本项目是上海市《农业信息服务平台及农业大数据综合利用研究》子课题《上海农业农村大数据共享服务平台建设和应用》的研究成果。 该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。 华东师范大学数据科学与工程学院(以下简称华师大数据学院)作为课题主要参与单位以实现智慧
1
EAkit 实体对齐工具包(EAkit),是许多实体对齐算法的轻量级,易于使用且高度可扩展的PyTorch实现。 算法列表来自 。 目录 设计 我们对现有的实体对齐算法进行排序并对其组成进行模块化,然后将抽象结构定义为1 Encoder-N Decoder(s) ,其中将不同的模块视为不同编码器和解码器的特定实现,以恢复算法的结构。 组织 ./EAkit ├── README.md # Doc of EAkit ├── _runs # Tensorboard log dir ├── data # Datasets. (unzip data.zip) │   └── DBP15K ├── examples
1
Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!
2021-09-23 17:58:09 15.16MB KG AAAI_2020
1