EMD的matlab代码分享MSN:用于密集点云完成的变形和采样网络 MSN是一种基于学习的形状补全方法,可以保留已知结构并生成密集且分布均匀的点云。 有关更多详细信息,请参阅我们的 AAAI 2020。 在这个项目中,我们还提供了点云的地球移动距离(EMD)的实现,它基于拍卖算法,只需要 $O(n)$ 内存。 完成后获得 32,768 分 用法 1) 环境和先决条件 pytorch 1.2.0 CUDA 10.0 Python 3.7 2) 编译 编译我们的扩展模块: cd emd python3 setup.py install cd expansion_penalty python3 setup.py install cd MDS python3 setup.py install 3) 下载数据和训练好的模型 从 下载数据和训练模型。 由于规模较大,我们不提供训练集的部分点云。 如果要训练模型,可以使用 和 生成它们。 我们为每个 CAD 模型生成 50 个局部点云。 4) 训练或验证 运行python3 val.py来验证模型或python3 train.py从头训练模型。 E
2023-02-24 12:37:19 5.01MB 系统开源
1
Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!
2021-09-23 17:58:09 15.16MB KG AAAI_2020
1
2020年2月7日-2月12日,AAAI 2020 于美国纽约举办。AAAI2020关于可解释人工智能的Tutorial引起了人们极大的关注,这场Tutorial详细阐述了解释黑盒机器学习模型的术语概念以及相关方法,涵盖基础、工业应用、实际挑战和经验教训,是构建可解释模型的重要指南。
2021-04-03 12:08:20 42.65MB XAI
1