MMEA:多模态知识图的实体对齐 在第13届知识科学,工程与管理国际会议(KSEM'2020)上发表的论文“ ”的模型代码和数据集。 实体对齐在知识图(KG)集成中起着至关重要的作用。 尽管已经在探索不同知识图之间的关系嵌入的关联上进行了大量的努力,但是它们可能无法在实际应用场景中有效地描述和集成多模式知识。 为此,在本文中,我们提出了一种新颖的解决方案,称为多模式实体对齐(MMEA),以解决多模式视图中的实体对齐问题。 具体来说,我们首先设计一种新颖的多模式知识嵌入方法,以分别生成关系知识,视觉知识和数字知识的实体表示。 沿着这条路线,将通过多模式知识融合模块集成不同类型知识的多种表示形式。 在两个公共数据集上进行的大量实验清楚地表明,与最新方法相比,MMEA模型的有效性有了很大的提高。 数据集 来自论文“ ”的三个具有关系,数值和视觉知识的公共多模,即FB15k,DB15k和Y
1
实体对齐旨在在不同的知识图(KG)中找到引用同一真实世界对象的实体。 KG嵌入的最新进展推动了基于嵌入的实体对齐的出现,该对齐方式在连续的嵌入空间中对实体进行编码,并根据学习到的嵌入来度量实体的相似性。 在本文中,我们对这一新兴领域进行了全面的实验研究。 这项研究调查了23种最新的基于嵌入的实体对齐方法,并根据它们的技术和特征对其进行了分类。 我们进一步观察到,当前的方法在评估中使用不同的数据集,并且这些数据集中的实体的程度分布与真实的KGs不一致。 因此,我们提出了一种新的KG采样算法,通过该算法我们可以生成一组具有各种异质性和分布的专用基准数据集,以便进行实际评估。 这项研究还产生了一个开源库,其中包括12种代表性的基于嵌入的实体对齐方法。 我们在生成的数据集上对这些方法进行了广泛的评估,以了解它们的优势和局限性。 此外,对于当前方法中尚未探索的几个方向,我们进行探索性实验并报告我们的
1
EAkit 实体对齐工具包(EAkit),是许多实体对齐算法的轻量级,易于使用且高度可扩展的PyTorch实现。 算法列表来自 。 目录 设计 我们对现有的实体对齐算法进行排序并对其组成进行模块化,然后将抽象结构定义为1 Encoder-N Decoder(s) ,其中将不同的模块视为不同编码器和解码器的特定实现,以恢复算法的结构。 组织 ./EAkit ├── README.md # Doc of EAkit ├── _runs # Tensorboard log dir ├── data # Datasets. (unzip data.zip) │   └── DBP15K ├── examples
1