object_detection_hog_svm
使用HOG和SVM进行目标检测,主要代码来源于,可直接参考该仓库,本仓库仅仅为了自己的理解对文中代码进行阅读,后期加入定制的目标检测方法以及数据集。
基本思路
训练过程
准备一个数据集,包含pos(存在检测物体)和neg(不存在检测物体),这个数据集中的图像大小相同,比如(40, 100)高度x宽度,那么使用HOG检测子对数据集检测HOG特征,pos标记为正例样本,neg标记为负例样本,输入到SVM分类起进行训练,得到分类模型。
测试过程
输入一张图像,使用图像金字塔对图像进行下采样,每一个octave的图像进行滑窗操作,滑窗大小与训练数据集中的图像大小相同,比如(40, 100)高度x宽度,每一次滑窗后的图像提取HOG特征子,输入训练好的SVM分类器中进行预测,如果检测结果为正例样本,即pos存在检测物体,那么记录该检测结果,detect
1