超宽带 (UWB) 是一种通过无线电波运行的短距离无线通信协议,可实现安全可靠的测距和精确传感,为无线设备创造空间环境的新维度。 基于IC DecaWave DW1000的Makerfabs ESP32 UWB模组受到众多创客的青睐和喜爱。还与DWM1000相比,DWM3000具有以下优势: 最重要的:与苹果U1芯片互通,与苹果系统协同工作成为可能; 与FiRa PHY、MAC、认证开发完全对接,更适合进一步应用; 功耗更低,几乎是DWM1000的1/3; 支持UWB频道5(6.5GHz)和9(8GHz),而DWM1000不支持频道9; 特征 集成 ESP32 2.4G WiFi 和蓝牙。 DW3000 超宽带模块。
2024-06-24 16:37:40 416KB
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
音乐风格分类,使用sklearn中的随机森林,包含数据集清理,特征选择,模型的选择和超参数调参,模型训练,数据可视化等。 包含数据集和jupyter代码,可以直接运行。
2024-06-24 13:51:42 564KB sklearn 机器学习
1
基于SSM(Spring + SpringMVC + MyBatis)实现的校园顺路代送微信小程序,为校园内的师生提供了一种便捷、高效的物品代送服务。以下是其主要功能描述: 用户注册与登录:用户可以通过手机号或校园邮箱进行注册和登录,确保信息安全和服务的个性化。 发布代送需求:用户可以在小程序上发布代送需求,包括起点、终点、物品描述、代送时间等信息,以便寻找顺路的代送者。 浏览与接单:代送者可以浏览当前所有的代送需求,并根据自己的行程和时间选择接单。接单后,系统会自动通知需求发布者。 实时位置共享:为了确保代送过程的透明和安全,系统支持实时位置共享功能,需求发布者和代送者都可以查看对方的实时位置。 支付与评价:代送完成后,需求发布者可以通过小程序进行支付,并对代送者的服务进行评价。评价将作为代送者的信誉参考。 消息通知与提醒:系统会实时推送代送状态更新、订单完成等消息通知,确保用户能够及时了解代送情况。 个人中心管理:用户可以在个人中心查看自己的代送记录、评价记录等信息,并进行相应的管理操作。 综上所述,基于SSM实现的校园顺路代送微信小程序通过发布代送需求、浏览接单、实时位置共享、支付评价等功能,为校园内的师生提供了一种方便、快捷、安全的物品代送服务。
2024-06-24 10:49:43 17.58MB 微信小程序
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真模型及运行结果
2024-06-24 10:39:02 1.57MB matlab
1
本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!!
2024-06-24 10:13:36 36.22MB java 毕业设计 课程作业 springboot
使用CUBEMX开发,硬件为stm43f407正点原子探索者开发板。 具有开始、游戏、结束的图形界面。 可以实现设置蛇体颜色、速度等游戏功能。
2024-06-24 09:12:48 14.09MB stm32
1
基于stm32的秒表计时器设计系统Proteus仿真(源码+仿真+全套资料)
2024-06-23 22:26:05 15.13MB
1
在当前的互联网时代,自助式劳务众包平台已经成为了经济活动中的一种创新模式,其中“拍照赚钱”是典型的代表。这类平台通过移动互联网技术,让普通用户能够参与商业检索和信息采集任务,同时获取报酬。然而,平台的任务完成率往往受到定价策略的影响。本研究旨在探索并优化基于互联网的自助式劳务众包定价模型,以提高任务执行效率。 首先,研究者对附件一中已结束项目的数据进行了分析,发现任务定价与任务点距离城市中心的远近有显著关联。具体来说,任务点距离城市中心越远,定价越高。同时,未完成的任务多数位于城市边缘,可能是因为交通不便或成本较高导致。因此,交通成本和时间成本是影响任务定价的重要因素。 为了解决这一问题,研究者构建了一个层次分析模型,考虑了交通成本、时间成本、任务与会员的距离、任务与市中心的距离以及会员密度等因素。通过MATLAB工具箱进行多元函数拟合,确定了这些因素对定价的影响权重。结果显示,定价与交通成本和时间成本的相关性较高,而会员密度的影响相对较小。 针对任务打包发布的问题,研究者借鉴了出租车拼车的思路,提出了动态定价模型。当用户抢到包含多个任务的打包任务时,打包区域内后续任务的定价会按照首单定价的90%等比例递减。通过K-means聚类分析,将数据划分为50类,并建立了打包区域总价格函数。同时,通过建立任务完成情况评价模型,考虑总体平均信誉值,确保任务能有效执行。 对于附件三中新的项目,研究者采用了类似的方法,对任务点进行聚类分析,然后运用问题二和问题三的定价模型,为不同聚类点的任务制定了定价。尽管数据量较小,但这种方法有助于提高任务完成率。 总结来说,本研究通过深入分析和建模,揭示了任务定价与地理位置、交通成本、时间成本等因素的密切关系,并提出了一套综合考虑多种因素的定价策略。动态打包和定价模型的引入,旨在优化资源分配,提高任务执行的效率和完成率。通过数学模型和数据分析工具,如谷歌地图、多元函数拟合、层次分析法、神经网络和K-means聚类分析,研究者成功地为自助式劳务众包平台提供了更科学、合理的定价指导。
2024-06-23 18:45:44 15.55MB
1
YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1