Many U.S. Government Information Technology (IT) systems need to employ well-established cryptographic schemes to protect the integrity and confidentiality of the data that they process. Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information Processing Standard (FIPS) 197, Triple DES as specified in NIST Special Publication (SP) 80067, and HMAC as defined in FIPS 198 make attractive choices for the provision of these services. These algorithms have been standardized to facilitate interoperability between systems. However, the use of these algorithms requires the establishment of shared secret keying material in advance. Trusted couriers may manually distribute this secret keying material. However, as the number of entities using a system grows, the work involved in the distribution of the secret keying material could grow rapidly. Therefore, it is essential to support the cryptographic algorithms used in modern U.S. Government applications with automated key establishment schemes.
1