"信号失真度测量装置(A题)" 本文将对信号失真度测量装置的设计和实现进行详细的解释和分析。该装置旨在测量来自函数/任意波形发生器的周期信号的总谐波失真(THD),并将测量结果显示在手机上。 一、基本要求 信号失真度测量装置的基本要求包括: 1. 输入信号的峰峰值电压范围:300mV~600mV。 2. 输入信号基频:1kHz。 3. 输入信号失真度范围:5% ~ 50%。 4. 要求对输入信号失真度测量误差绝对值xoTHD -THD≤5%,xTHD 和oTHD 分别为失真度的测量值与标称值。 5. 显示失真度测量值xTHD。 6. 失真度测量与显示用时不超过 10 秒。 二、发挥部分 信号失真度测量装置的发挥部分包括: 1. 输入信号的峰峰值电压范围:30mV ~ 600mV。 2. 输入信号基频范围:1kHz ~100kHz。 3. 测量并显示输入信号失真度xTHD 值,要求xoTHD -THD≤3%。 4. 测量并显示输入信号的一个周期波形。 5. 显示输入信号基波与谐波的归一化幅值,只显示到 5 次谐波。 6. 在手机上显示测量装置测得并显示的输入信号xTHD 值、一个周期波形、基波与谐波的归一化幅值。 三、说明 信号失真度测量装置的说明包括: 1. 本题用于信号失真度测量的主控制器和数据采集器必须使用 TI 公司的 MCU 及其片内 ADC,不得使用其他片外 ADC 和数据采集模块(卡)成品。 2. 关于 THD 的说明:当放大器输入为正弦信号时,放大器的非线性失真表现为输出信号中出现谐波分量,即出现谐波失真,通常用“总谐波失真 THD(total harmonic distortion)”定量分析放大器的非线性失真程度。 3. 本题信号失真度测量采用近似方式,测量和分析输入信号谐波成分时,限定只处理到5次谐波。 4. 基波与谐波的归一化幅值:当输入信号的基波幅值为m1U,各次谐波幅值分别为m2U、m3U…,基波与谐波的归一化幅值为:m2m1UU、m3m1UU…. 四、评分标准 信号失真度测量装置的评分标准包括: 1. 设计报告:系统方案比较与选择,方案描述。 2. 理论分析与计算:测量原理分析计算,误差分析。 3. 电路与程序设计:电路设计,程序设计。 4. 测试方案与测试结果:测试方案,测试结果完整性,测试结果分。 信号失真度测量装置的设计和实现需要满足基本要求和发挥部分的条件,同时需要遵守评分标准的要求。
2025-05-15 16:49:06 890KB 电子设计竞赛
1
内容概要:本文详细介绍了利用COMSOL进行微波等离子体化学气相沉积(MPCVD)装置仿真的方法和技术要点。主要内容涵盖电磁场、流体力学和化学反应的耦合建模,特别是针对H2气体在低气压条件下的放电过程进行了深入探讨。文中提供了具体的MATLAB代码片段用于设置微波端口参数,以及Java代码段用于定义碰撞反应。同时讨论了等离子体参数随时间变化的特点,并提出了采用准静态近似的解决方案。此外,还涉及了刻蚀仿真中表面反应的动力学模型构建,强调了刻蚀速率与离子能量分布之间的关系。最后给出了仿真过程中可能出现的问题及其解决办法。 适合人群:从事等离子体物理、半导体制造工艺、材料科学等领域研究的专业人士,尤其是对MPCVD技术和COMSOL仿真软件有一定了解的研究人员。 使用场景及目标:适用于希望深入了解MPCVD装置内部物理机制并掌握其仿真方法的研究人员;目标是在低气压条件下优化金刚石薄膜沉积和刻蚀工艺。 其他说明:文中提到的技术细节如准静态近似、碰撞截面数据获取、表面反应建模等均为提高仿真精度的关键因素。对于复杂情况下的仿真,可能需要结合多种数值方法以确保结果准确性。
2025-05-14 14:38:02 253KB
1
Uniform provisions concerning the approval of devices for reversing motion and motor vehicles with regard to the driver’s awareness of vulnerable road users behind vehicles 联合国欧洲经济委员会(UNECE)的R158法规是关于车辆后视装置及驾驶员对车后易受伤道路使用者感知的统一规定。该法规旨在确保机动车在倒车时,驾驶员能够有效感知到车辆后方的弱势道路使用者,如行人、儿童、骑自行车者等,从而降低交通事故的风险。 法规R158是联合国1958年协议的一部分,其目的是通过制定统一的技术规定,促进成员国之间汽车设备和部件批准的相互认可。这一协议经过多次修订,最新的版本包含了2017年9月14日生效的修正案。R158法规于2021年6月10日正式成为1958年协议的附件。 法规内容主要包括: 1. **适用范围**:R158法规适用于所有安装了倒车装置的机动车辆,要求这些装置能帮助驾驶员识别并警告车辆后方的易受伤道路使用者。法规涵盖的设备包括但不限于倒车摄像头、倒车雷达和其他辅助视觉系统。 2. **定义**:法规定义了“倒车装置”是指安装在车辆上,用于增强驾驶员在倒车时对周围环境理解的设备。同时,法规也定义了“易受伤道路使用者”,即那些在交通环境中由于身体脆弱性而更易受到伤害的人,如儿童、老人、行人和骑自行车的人。 3. **技术要求**:法规详细规定了倒车装置的技术性能标准,包括但不限于视野覆盖范围、图像质量和响应时间。例如,摄像头必须提供清晰的图像,以便驾驶员可以识别出至少某些特定尺寸的物体,雷达系统则需要在特定距离内发出警告。 4. **测试与认证**:制造商必须按照R158的规定进行产品测试,并获得联合国授权的认证机构的认可。只有符合这些严格标准的设备才能被批准安装在车辆上。 5. **互认原则**:根据联合国1958年协议,成员国之间应相互承认依据R158法规授予的批准证书。这意味着一个国家批准的符合R158的设备可以在其他成员国市场上销售和使用。 6. **持续改进**:随着技术的进步,R158法规也会不断更新,以适应新的安全需求和技术创新,如自动驾驶辅助系统的集成。 R158法规的实施对于提升道路交通安全具有重要意义,它强调了对弱势道路使用者的保护,是全球汽车安全法规体系中的重要一环。通过强制性的倒车装置要求,R158有助于减少因倒车事故造成的伤亡,特别是在视线受阻或驾驶员盲区较大的情况下。
2025-05-13 17:06:47 888KB 欧盟法规
1
摘要:本报告详细介绍了设计并制作一个自动化三子棋游戏装置的全过程。该装置的核心是利用 Adruino Mega2560 为主控芯片来协调控制机械臂,实现机器与人类玩家进行三子棋对弈的功能。棋盘按标准三子棋布局设计,具有 9 个由黑色实线围成的方格,棋子通过机械臂实现自动放置。 在设计中,我们首先确定了棋盘和棋子的物理尺寸及材质,确保机械臂可以准确无误地拾取和放置棋子。机械臂的设计采用了精确舵机控制系统,结合定制的夹爪,以适应本题目要求的棋子尺寸。传感器系统包括了位置传感器、力量传感器和视觉识别系统,确保机械臂操作的准确性和对棋子放置状态的实时监控。Adruino Mega2560 作为系统的控制中心,编写了专业的控制代码,用于处理来自传感器的输入信号,并根据预设的对弈算法来驱动机械臂运动。此外,设计了用户界面,允许玩家通过按钮选择棋子的放置位置。 实验测试表明,该三子棋游戏装置能够稳定运行,机械臂响应迅速且准确,实现了预定的人机对弈功能。装置提供了一种结合物理互动与计算机对弈的新型游戏体验,具有一定的教育意义和娱乐价值。
2025-05-10 23:33:34 1.53MB
1
"简易差分放大器性能测试装置(B题)" 本资源摘要信息对于简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍。该装置主要用于测试差分放大器的性能,包括差模电压放大倍数和共模电压放大倍数的测量、幅频特性测量和差模传输特性测量等。 一、任务 设计并制作一台自动测量场效应晶体管差分放大器性能的简易测试装置。被测差分放大器电路如图 1 所示,自行搭建。 图 1 差分放大器电路 二、要求 1. 基本要求 (1)按图 1 中参数搭建差分放大器电路,并调试使之正常工作。其中晶体管采用 N 沟道小功率场效应晶体管,型号任选不限。(10 分) (2)该装置自行产生测试信号 ui 加在放大器输入端,能够采集放大器输出端的信号 uo,并能够显示信号波形。测试时应用示波器同时监测 4 个输入输出端点 ui+、ui-、uo+、uo-的信号。要求: * 输入差模 uid 类型:DC:0~500mV,10mV 步进;AC:幅度(有效值):0~200mV,10mV 步进,频率:100Hz~300kHz,100Hz 步进。uid 类型、幅度大小和频率可用键盘设置。 * 输入共模 uic 类型:AC:幅度(有效值):2V,频率:1kHz。(20 分) (3)差模放大倍数测量。在 1kHz 频率下测量放大器的差模电压放大倍数 Aud 并记录显示。Aud=Uod/Uid(10 分) (4)共模放大倍数测量。在 1kHz 频率下测量放大器的共模电压放大倍数 Auc 并记录显示。Auc=Uoc/Uic Uic= Ui+ = Ui- =2V 测试共模放大倍数时允许手动改变连接切换输入信号。(10 分) 二、发挥部分 (1)幅频特性测量。连续改变输入信号频率,实时测量并显示放大器电压放大倍数的幅频特性曲线 Aud(f)。给出上限截止频率值并显示记录。(24 分) (2)差模传输特性测量。uid =0~500mV 以 DC 逐点扫描方式测量并显示放大器的差模传输特性(uod 随 uid 变化的关系)曲线。(21 分) (3)其他。(5 分) 三、说明 1. 作品可采用现场提供的直流稳压电源供电。 2. 基本要求(1)调测时可用信号发生器和示波器测量。 3. 测量精度要求:相对误差的绝对值不超过 10% 。 本资源摘要信息对简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍,涵盖了差分放大器的基本原理、设计要求和测试方法等方面的知识点。
2025-05-06 12:06:23 139KB 性能测试
1
1.自动门控制装置的硬件组成: 自动门控制装置由门内光电探测开关K1、门外光电探测开关K2、开门到位限位开关K3、关门到限位开关K4、开门执行机构KM1(使直流电动机正转)、关门执行机构KM2(使直流电动机反转)、刷卡检测器等部件组成。 2.控制要求: 上午8:00~下午6:00: 1)当有人由内到外或由外到内通过光电检测开关K1或K2时,开门执行机构KM1动作,电动机正转,到达开门限位开关K3位置时,电机停止运行。 2)自动门在开门位置停留8秒后,自动进入关门过程,关门执行机构KM2被起动,电动机反转,当门移动到关门限位开关K4位置时,电机停止运行。 3)在关门过程中,当有人员由外到内或由内到外通过光电检测开关K2或K1时,应立即停止关门,并自动进入开门程序。 4)在门打开后的8秒等待时间内,若有人员由外至内或由内至外通过光电检测开关K2或K1时,必须重新开始等待8秒后,再自动进入关门过程,以保证人员安全通过。 下午6:00~上午8:00: 自动门处于关闭状态时,必须先用银行卡在刷卡检测器上刷卡,检测器检测通过后,系统自动按前面1)至4)步工作。 **课程设计:自助银行自动门控制装置** 本次课程设计的主题是使用PLC(可编程逻辑控制器)来设计和实现一个自助银行自动门控制装置。该装置的目的是在保证安全的前提下,提供高效、智能的出入控制服务。以下是该装置的硬件组成和控制要求的详细解析。 **硬件组成:** 自动门控制装置的核心部分包括以下组件: 1. **光电探测开关K1和K2**:分别安装在门内和门外,用于检测人员进出。 2. **开门到位限位开关K3**:当门开启到预定位置时,触发该开关停止电机。 3. **关门到限位开关K4**:门关闭到完全闭合时,触发此开关停止电机。 4. **开门执行机构KM1**:控制直流电动机正转,用于开门。 5. **关门执行机构KM2**:控制电动机反转,用于关门。 6. **刷卡检测器**:在非营业时间,检测银行卡以验证用户身份。 **控制要求:** 1. **日常运营时段(8:00-18:00)**: - 当有人通过K1或K2时,KM1启动,电动机正转至K3位置停止,门开启。 - 开门后8秒,KM2启动,电动机反转,门向K4位置关闭。 - 在关门过程中,若有人通过K1或K2,应立即停止关门并再次开门。 - 8秒等待期内若有人员通过,需重新计时8秒后才可再次关门,确保安全。 2. **非营业时段(18:00-8:00)**: - 门保持关闭状态,需通过刷卡检测器验证银行卡后,按照日常运营时段的规则进行操作。 **控制逻辑与PLC的应用:** 在设计PLC程序时,首先需要根据系统需求分析控制系统,列出I/O分配表,绘制I/O接线图,以及创建顺序功能图、系统运行框图或流程图。然后,编写控制梯形图,确保包含系统初始化环节。编程器用于输入梯形图控制程序,并进行模拟运行和调试。 在PLC程序中,可能的梯形图设计会涉及到以下元素: 1. **输入信号处理**:光电开关K1和K2的信号将触发相应操作。 2. **时间延迟**:使用定时器实现8秒的等待期。 3. **状态转移**:在不同操作之间切换,如开门、关门、暂停等。 4. **中断处理**:检测到人员通行时,立即停止当前操作并启动相反操作。 5. **限位开关监控**:根据K3和K4的状态控制电机运行方向。 通过这样的设计,PLC可以精确控制自动门的运动,确保其安全、可靠地服务于自助银行的顾客。在课程设计进程中,学生需要按照指定的时间表完成理论分析、程序编写、模拟运行和调试等工作,以达到课程设计的目标。 **参考资料:** 可参考《可编程序控制器原理及应用》等相关书籍,以深入理解PLC的工作原理和编程技术。 这个课程设计不仅锻炼了学生的PLC编程能力,也培养了他们解决实际问题的能力,为未来从事自动化领域的工作打下了坚实的基础。
1
《消防控制室图形显示装置——利达LD6901 S 5.0.10安装详解》 在消防安全领域,图形显示装置扮演着至关重要的角色,它能够实时监控并直观展示消防系统的运行状态,为管理和操作人员提供关键信息。利达LD6901消防控制室图形显示装置是这样一款专业设备,它结合了先进的技术和人性化的设计,旨在提升消防系统的管理和应急响应效率。本文将详细介绍其S 5.0.10版本的安装过程及相关知识点。 一、装置简介 利达LD6901消防控制室图形显示装置是一款专为消防监控设计的智能化设备,具备高清晰度的显示屏,能实时显示消防报警、联动控制、设备状态等信息。S 5.0.10版在前代基础上进行了优化升级,提升了系统的稳定性和用户体验。 二、系统需求 在安装前,需确保计算机硬件满足以下基本要求: 1. 操作系统:Windows 7或更高版本。 2. 内存:至少2GB RAM,推荐4GB以上。 3. 硬盘空间:至少200MB可用空间用于软件安装。 4. 显示分辨率:1024x768或更高。 三、安装步骤 1. 解压:将收到的“LD6901 消防控制室图形显示装置_S 5.0.10_安装程序.zip”压缩文件解压至本地文件夹。 2. 运行安装程序:找到解压后的安装文件,双击运行“LD6901Setup.exe”。 3. 阅读许可协议:在弹出的窗口中,仔细阅读软件许可协议,同意后点击“下一步”。 4. 选择安装路径:可以选择默认路径或者自定义安装路径,然后点击“下一步”。 5. 安装组件:确认安装组件无误,点击“安装”开始安装过程。 6. 等待安装完成:安装过程可能需要几分钟,期间不要关闭电脑或进行其他操作。 7. 完成设置:安装完成后,按照提示启动软件,进行必要的配置设置。 四、功能特点 1. 实时监控:LD6901能够实时显示消防系统的报警信息,包括火警、故障等状态。 2. 图形化界面:通过图形化界面,用户可以直观地查看消防设备分布和工作状态。 3. 联动控制:支持与各类消防设备的联动控制,如自动喷水灭火系统、气体灭火系统等。 4. 数据记录与查询:具备数据记录和查询功能,便于事故分析和历史数据回溯。 5. 用户管理:提供多级权限管理,确保操作安全。 五、维护与升级 为了保证设备的正常运行和功能的最新性,用户应定期检查系统更新,及时下载并安装官方发布的补丁和升级包。同时,注意定期备份重要数据,以防意外情况。 总结,利达LD6901消防控制室图形显示装置S 5.0.10版以其高效、直观的特点,为消防管理工作提供了强大的工具。正确安装和使用该装置,能够显著提高消防系统的管理效能,保障人们的生命财产安全。
2025-04-25 17:31:34 99.28MB 图形显示
1
本文将详细介绍全国大学生电子设计竞赛中的D题——信号调制方式识别与参数估计装置的设计要求和功能。此装置需能够识别不同类型的调制信号,并对其进行参数估计,同时提供解调信号供示波器观察。 基本要求涉及三种主要的模拟调制方式:AM(幅度调制)、FM(频率调制)以及连续载波(CW)。对于AM信号,装置需能识别调制信号频率F为1kHz时的AM信号,估算并显示调幅系数am,同时输出解调信号ou。对于FM信号,当调制信号频率F为5kHz时,装置需要估计调频系数fm和最大频偏maxΔf,同样输出解调信号。在未知调制方式的情况下,装置应能自动识别调制类型并显示结果。 此外,装置需要进一步扩展功能,当调制信号频率F为1kHz到5kHz之一时,装置应能识别AM或FM信号,并相应地估计和显示参数,如AM的调制信号频率F和调幅系数am,FM的调制信号频率F、调频系数fm和最大频偏maxΔf。如果识别为CW信号,仅显示"CW"。 发挥部分则涉及到数字调制,包括2ASK(二进制幅度键控)、2PSK(二进制相移键控)和2FSK(二进制频率键控)。对于2ASK,装置需估计码速率cR并显示二进制码序列波形;对于2FSK,除了估计码速率cR,还需显示移频键控系数h和解调后的二进制码序列;对于2PSK,也需估计码速率cR并显示解调后的二进制码序列。所有这些功能都需要在载波电压峰峰值为100mV、载频cf为2MHz的条件下完成。 在参数估计的准确性方面,装置的误差要求如下:am估计值与实际值的误差不超过0.1;fm估计值与实际值的误差不超过0.3;F估计值的误差不超过50Hz;maxΔf估计值的误差不超过300Hz。解调信号的输出必须通过单一端口,以便于示波器检测。 这个竞赛题目要求参赛队伍设计一个能够识别多种调制方式、准确估计参数并解调信号的电子装置,涵盖从模拟调制到数字调制的各种技术,同时强调了精度和实用性。这不仅考验了参赛者的理论知识,还锻炼了他们的实践能力和创新思维。
2025-04-16 15:32:05 399KB
1
SVC无功功率控制及电压稳定性研究——基于静止无功补偿器装置的仿真分析与实验研究。,SVC静止无功补偿器装置仿真,SVCTSCTCRFC,可得到电网电压(补偿后电流),负荷电流,通过dq检测计算得到负荷无功功率,输出无功功率。 ,SVC静止无功补偿器装置仿真; 补偿后电流; 电网电压; 负荷电流; dq检测计算; 负荷无功功率; 输出无功功率。,SVC仿真:无功功率补偿与输出控制 在现代电力系统中,静止无功补偿器装置(SVC)是一种用于改善电力系统性能的关键设备。SVC的主要功能是动态调节电网中的无功功率,从而提高电压稳定性,减少电压波动和闪变,优化整个电网的运行效率。由于其在电力系统中的重要作用,对SVC的研究和仿真分析显得尤为重要。 SVC的核心功能是进行无功功率的补偿。无功功率与有功功率共同构成了电力系统中传输的总功率。与有功功率不同的是,无功功率不对外做功,但它对于维持电气设备的正常工作是必不可少的。SVC通过补偿电网中的无功功率,可以有效提升电压水平,保持电网的稳定性。 在进行SVC的仿真分析时,需要关注的主要参数包括电网电压、补偿后的电流以及负荷电流。通过对这些参数的模拟和分析,可以评估SVC对电网性能的影响。在这些参数的计算中,dq检测技术被广泛应用。dq检测技术是一种常用的同步旋转坐标系下的交流信号分析方法,它能够将三相交流信号转换为直流或等效直流信号,便于进行更精确的控制和分析。 在SVC的仿真研究中,负荷无功功率的计算也是一个重要的方面。通过dq检测计算得到的负荷无功功率,可以评估SVC补偿装置的性能,并对电力系统的无功功率进行优化配置。输出无功功率是SVC进行无功补偿的直接结果,其大小和方向需要根据电网的实际运行情况动态调整。 SVC在电力系统中的应用,不仅限于无功功率的补偿。它还可以与其他设备如串联电容器(TCR)、固定电容器(TSC)等配合使用,形成综合的无功补偿策略,进一步提高电力系统的稳定性和传输效率。通过仿真分析,研究人员可以验证SVC及其控制系统的设计是否合理,以及是否满足电网运行的要求。 此外,SVC的研究不仅局限于仿真分析,还需要结合实际的实验研究来验证理论的正确性。实验研究能够为SVC的设计和优化提供实证支持,确保仿真分析结果的可靠性。 SVC无功功率控制及电压稳定性的研究,通过基于静止无功补偿器装置的仿真分析与实验研究,能够有效地解决电力系统运行中的无功功率问题,提升电网的稳定性和可靠性。通过对电网电压、补偿后电流、负荷电流以及负荷无功功率的分析计算,可以进一步优化SVC的设计和应用,实现电网性能的全面提升。
2025-04-07 20:09:17 1.11MB paas
1
标题中的“行业分类-设备装置-基于正六面体及大理石平台的光纤陀螺标定方法”揭示了这个主题属于精密仪器与设备领域,特别是关于光纤陀螺的标定技术。光纤陀螺(Optical Fiber Gyroscope,简称OFG或FOG)是一种利用光干涉原理测量角速度的传感器,广泛应用于航空、航天、航海、军事、地质等多个领域,因其高精度、抗电磁干扰等特性而备受青睐。 光纤陀螺的核心工作原理基于Sagnac效应,当一束光在光纤环中往返传播时,如果系统发生旋转,两束光的相位差将产生,通过检测这一相位差可以确定系统的转动速率。然而,由于制造过程中的误差和使用环境的影响,光纤陀螺的性能可能会有所下降,因此需要定期进行标定以确保其测量精度。 描述中的“基于正六面体及大理石平台的光纤陀螺标定方法”提到了一种特殊的标定手段。大理石平台因其优良的硬度、稳定性以及低热膨胀系数,常被用作精密测量的基准平面。正六面体可能指的是一个六面均等的几何体,用于在多个轴向上对陀螺进行标定,确保其在各个方向上的测量一致性。 光纤陀螺的标定通常包括以下几个关键步骤: 1. **零点校准**:确定无旋转情况下的输出,以消除静态误差。 2. **温度稳定化**:因为光纤的物理性质受温度影响,需要在恒温环境下进行标定。 3. **振动隔离**:减少环境振动对测量结果的影响,大理石平台能提供良好的振动隔离效果。 4. **多轴旋转测试**:利用正六面体进行多方向旋转,检查陀螺在不同轴向的响应,确保全方位的准确性。 5. **长期稳定性评估**:监测长时间内的输出变化,评估陀螺的长期稳定性。 6. **线性度和偏置漂移**:分析输出与输入角速度的关系,以及在无输入时的输出变化,优化陀螺性能。 光纤陀螺的标定方法对于提高测量精度至关重要,而且随着技术的发展,标定技术也在不断进步,包括更先进的标定设备、算法优化等。通过这样的标定过程,可以确保光纤陀螺在各种复杂环境下的可靠性和精度,从而满足不同应用场景的需求。
2025-04-03 15:20:12 868KB
1