根据PSD(功率谱密度)和DWT(离散小波变换)两种特征,根据唤醒和效价(高/低)对脑电评分进行情绪识别分类。 运行process.m文件可以获取功率谱密度文本文件。 生成的每个测试文件都包含α、β、δ和θ波功率谱密度比(通过总psd标准化),分别为效价、唤醒和组合输出。运行dwt_feature_extraction.m生成DWT分析波的测试文件。它由3个特征组成:小波能量、小波熵和标准差,以及arousla和valce的评级。文件夹“psd analysis knn and svm”和“dwt analysis”已经包含处理过的文本文件和python代码,用于从这些测试文件中获取训练数据并进行分类。使用KNN和SVM运行ipynb文件进行分类。
2022-01-03 09:13:04 3.49MB matlab 脑电情绪识别 深度学习
使用 DEAP 数据集从脑电图信号进行情绪识别,准确率为 86.4%。应用了多种机器学习模型,并实现了DWT算法等各种信号转换算法。 并对数据进行了归一化、离散小波变换、划分频段、提取频域特征等等处理。
主要是想对DEAP脑电数据集进行单纯的频域特征分析,详情见个人主页的介绍
2022-01-02 19:09:01 4.48MB DEAP 脑电情绪识别 频域特征
脑电情绪识别的二分类算法,数据用的deap数据集。 代码主要分为三部分:快速傅里叶变换处理(fft)、数据预处理、以及各个模型处理。 采用的模型包括:决策树、SVM、KNN三个模型(模型采用的比较简单,可以直接调用库,很适合我这种新手,看起来也方便)。
基于matlab的表情识别代码蜘蛛人 我们提出了一种用于以眼镜形式处理用于情感识别和传感的原位生物信号数据的系统,该系统将定制的模块化生物信号采集电路与一套算法和基于机器学习的分类器相结合,以产生准确的生物信息。信号和情感类别。 拟议的平台使用来自非接触式传感器的数据来提供:1)眼睛和眉毛检测; 2)瞳Kong测量; 3)zy肌(微笑肌)运动;以及4)头部运动。 该平台还可以扩展为包括基于接触的传感器提供的功能,例如5)心率和6)8通道EEG。 SPIDERS_PCB_Design 该文件夹包含主板和电源板的所有PCB设计。 管道 管道文件夹包含用于数据预处理,面部标志检测,面部表情检测和情感分类的代码。 #GUI此文件夹包含初步实验MATLAB GUI的材料。
2021-12-23 19:14:28 4.52MB 系统开源
1
会话中很棒的情感识别 有关与会话中的情感识别(ERC),上下文情感/情感/讽刺分析或语用学的共同分类(如会话中的对话行为)相关的论文的综合阅读清单。 如果列表中缺少任何新的或现有的纸张,请随时发送PR。 什么是ERC? ERC是一项旨在预测对话中每种话语的情感的任务。 以下是一段对话的摘录,其中每种话语都标有相应的情感和情感标签: 概观 ,IEEE情感计算2020交易 ,IEEE Access 2019 资料资源 ,COLING 2020 ,ACL 2020 ,IEEE Access 2020 ,Arxiv 2020 ,LREC 2020 ,ACL 2019 ,ACL 2019 人类行为计算机2019 ,LREC 2018 DailyDialog:手动标记的多回合对话数据集,AFNLP 2017 semaine数据库:人与有限代理之间带有情感色彩的对话的带注释的多
1
基于deap数据集,采用了卷积神经网络(CNN)和长短期记忆神经网络等四种模型进行对比,并结合pyeeg进行特征提取,最终准确率达到了90
针对情感计算需求,设计了一种基于STM32L0的低功耗生理信号采集腕带设备,利用低功耗蓝牙无线通信将采集的生理信号实时发送至具有蓝牙4.0接口的智能设备端,采用BP神经网络对生理信号进行分析处理。实验结果表明,该设备可实现准确的心率、皮肤温度、皮肤阻抗、运动状态检测,通过多维度的生理信号分析,识别个体的情绪状态,其中紧张、中性、兴奋的识别率达到95%以上,为情感计算提供一种可穿戴设备。
2021-11-22 08:35:23 487KB 情感计算
1
基于DEAP数据集的特征提取———近似熵、排列熵、样本熵, 包含上述三个方法的python代码实现,全部在Jupyter Notebook上实现的
2021-11-18 09:07:22 283KB deap 脑电情绪识别 脑电特征提取 python
主要内容是采用DEAP数据集将脑电信号进行频域分段并提取其微分熵特征,为了充分利用空间特征,结合微分熵特征将其构建为一个三维脑电特征,输入到连续卷积神经网络,并最终取得了90.24%的准确率。 提出了一种脑电特征的三维输入形式,并将其输入到连续卷积神经网络中进行情感识别。三维输入的优点是在集成多个频带的微分熵特征的同时保留电极之间的空间特征。 ———————————————— 版权声明:本文为CSDN博主「qq_3196288251」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_45874683/article/details/121356408