3rd Edition - Probability, Random Variables and Stochastic
2022-06-08 19:15:54 48.21MB Probability Random
1
解决了世纪难题,随机选择今天吃什么,下载后,直接使用就行了
2022-06-07 16:44:14 1KB random
1
Nyc-Taxi-Kaggle-挑战 目标 Kaggle竞赛预测纽约出租车的行驶时间。 该项目的报告在capstone.pdf。 (在这个项目中,我提供了许多链接,如果您是初学者,可以通过这些链接来弄清楚您的概念,如果不理解的话,可以通过project和readme中提供的链接和pdf来了解。) 问题陈述 在本报告中,我们使用来自纽约市出租车和高级轿车委员会的数据来考察Kaggle竞赛,该竞赛要求竞争对手预测纽约市出租车旅行的总行驶时间(trip_duration)。 Kaggle提供的数据是作为CSV文件提供的结构化数据。 CSV文件中的数据包括多种格式:时间戳,文本和数字数据。 这是回归分析,因为输出(总行驶时间)是数字。 我将使用几种机器学习方法来完成预测任务,这些方法是线性回归,k最近邻回归,随机森林和XGBoost。 将使用均方根对数误差对模型进行评估。 总览 我使用Jupyter_Notebook在dekstop上执行此项目,并且在使用python的远程服务器上也无需使用Jupyter_notebook来执行。 软件和库 Python 3 Scikit-learn:Pyt
2022-06-05 16:04:07 23.28MB python machine-learning deep-learning random-forest
1
代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random graph算法程序代码 复杂网络random gra
2022-06-04 18:06:59 2KB 网络 算法 代码复杂网络randomgr
esearchers in spatial statistics and image analysis are familiar with Gaussian Markov Random Fields (GMRFs), and they are traditionally among the few who use them. There are, however, a wide range of applications for this methodology, from structural time-series analysis to the analysis of longitudinal and survival data, spatio-temporal models, graphical models, and semi-parametric statistics. With so many applications and with such widespread use in the field of spatial statistics, it is surprising that there remains no comprehensive reference on the subject. Gaussian Markov Random Fields: Theory and Applications provides such a reference, using a unified framework for representing and understanding GMRFs. Various case studies illustrate the use of GMRFs in complex hierarchical models, in which statistical inference is only possible using Markov Chain Monte Carlo (MCMC) techniques. The preeminent experts in the field, the authors emphasize the computational aspects, construct fast and reliable algorithms for MCMC inference, and provide an online C-library for fast and exact simulation. This is an ideal tool for researchers and students in statistics, particularly biostatistics and spatial statistics, as well as quantitative researchers in engineering, epidemiology, image analysis, geography, and ecology, introducing them to this powerful statistical inference method.
2022-06-02 22:48:58 9.85MB Gaussian Markov Random Fields
1
很棒的决策树研究论文 精选的决策,分类和回归树研究论文清单,包括来自以下会议的实现: 机器学习 计算机视觉 自然语言处理 数据 人工智能 关于,,,和论文的类似集合以及实现。 2020年 DTCA:可解释的索赔验证基于决策树的共同注意网络(ACL 2020) 吴连伟,袁Yuan,赵永强,梁浩,安布琳·纳齐尔 隐私保护梯度提升决策树(AAAI 2020) 李勤彬,吴兆敏,温则宜,何炳生 实用联合梯度提升决策树(AAAI 2020) 李勤彬,温则宜,何炳生 最优决策树的有效推断(AAAI 2020) 弗洛伦特·阿韦拉内达(Florent Avellaneda) 使用缓存分支和边界搜索学习最佳决策树(AAAI 2020) 盖尔·阿格林(Gael Aglin),齐格弗里德·尼森(Pierre) 决策树集合分类器的抽象解释(AAAI 2020) 弗朗切斯科·朗佐托(Marco Zanella) (多任务)梯度增强树的可扩展功能选择(AISTATS 2020) Cuize Han,Nikhil Rao,Daria Sorokina,Karthik Subbia
1
先给大家介绍下python中random模块 random与numpy.random对比: 1、random.random():生成[0,1)之间的随机浮点数; numpy.random.random():生成[0,1)之间的随机浮点数; numpy.random.random(size=(2,2)),生产一个2维的随机数组,每维2个随机数,数据区间[0,1) 2、random.randint(a,b):生产[a,b]之间的随机整数; numpy.random.random(1,5,5):返回一个一维数组,共计5个元素,数据区间为[1,5) numpy.random.random(1,5,(2
2022-05-22 20:53:51 43KB AND do dom
1
Random sampling of bandlimited signals on graphs.zip
2022-05-20 15:48:55 2.46MB
1
从零开始的应用概率论 数据和幻灯片与在线网络研讨会系列一起提供:Data For Science的 。 在Binder中运行代码: 机器学习和人工智能的最新进展引起了计算机科学和数学这两个领域的极大关注和兴趣。 这些进步和发展中的大多数都依赖于随机模型和概率模型,需要对概率论以及如何将其应用于每种特定情况有深入的了解。 在本讲座中,我们将以动手和渐进的方式介绍概率论的理论基础以及诸如工业和学术界实际应用中常用的马尔可夫链,贝叶斯分析和A / B测试等最新应用。 时间表 基本定义和直觉 了解什么是概率 计算不同结果的可能性 根据特定的概率分布生成数字 根据样本估算种群数量 随机游走和马尔可夫链 模拟一维随机游走 了解网络上的随机游走 定义马尔可夫链 实施PageRank 贝叶斯统计 了解条件概率 派生贝叶斯定理 了解如何更新信仰 A / B测试 了解假设检验 测量p值 比较两个结果的可能
2022-05-19 13:13:48 33.79MB machine-learning tutorial markov-chains random-walk
1
手机价格预测 使用的数据集: : 数据集的简短描述: 功能名称 功能说明 类型 ID ID 数字 电池电量 电池可存储的总能量(以mAh为单位) 数字 蓝色的 有没有蓝牙 布尔型 时钟速度 微处理器执行指令的速度 数字 双SIM卡 是否支持双卡 布尔型 fc 前置摄像头百万像素 数字 four_g 是否有4G 布尔型 int_memory 内部存储器(以千兆字节为单位) 数字 m_dep 移动深度(厘米) 数字 mobile_wt 手机重量 数字 n_cores 处理器核心数 数字 个人电脑 主相机百万像素 数字 px_height 像素分辨率高度 数字 px_width 像素分辨率宽度 数字 内存 随机存取内存(以兆字节为单位) 数字 sc_h 手机屏幕高度(厘米) 数字 sc_w 手机屏幕宽度,以厘米为单位 数字 谈话时间 通话将持续最长的电池
1