VB检测获取网卡MAC地址,没有什么可介绍的了,得到网卡的MAC地址,出厂时候厂家设置的MAC,比较底层的硬件信息。
2024-06-23 21:43:22 3KB VB源码-网络相关
1
取外部树型框节点文本系统结构:TreeView_GetSelection,TreeView_GetNextItem,GetTVItemText,TreeView_GetItem,SendMessage,SendMessageTV,======程序集1||||------TreeView_GetSelection||||------TreeView_GetNextItem||||======窗口程序
1
MAC地址基本唯一,其用途,地球人都知道。 最近有幸分析了一下取MAC地址的大量代码,提炼总结了一下,编了个小工具(为封装测试过程的衍生品),可用。并附有关键源码(试着点击对话框,会显示)。 VB API 调用可以解决取 MAC 地址。需要知道MAC数据块的偏移地址。数据块640字节,重要字段的偏移: dwNext As Long 'MAC数据块的首地址,偏移 0字节,L=4 dwAddressLength As Long '【偏移400字节,L=4 ;MAC地址段数,总==6】 sMACAddress(0 To 7) As Byte '【偏移404,L=8;MAC地址段列表, A(0)--A(N-1),N=6】。 还有一个笨办法:Ipconfig /All >>Text.txt /nul,读衍生数据文件,并非不可取,只是慢一些。
2024-06-23 21:25:29 8KB MAC 源码
1
YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1
微信小程序借书小程序(附效果截图和源码及使用教程) 以大学生为主要适用对象,专注于大学生而设计的一款小程序,鼓励当代大学生阅读
2024-06-23 16:17:38 3.11MB 项目源码 毕业设计 安卓开发 微信
1
delphi 生成二维码源码 无需插件 解决中文问题
2024-06-23 16:00:10 297KB 生成二维码
1
1、包含编译好的qwindowkit库; 2、包含可运行exe文件; 3、可编译通过的源码; 4、Windows编译环境: MSVC 2019, 2022 + Qt 5.12 or higher 5、详情参考博客:https://blog.csdn.net/m0_37251750/article/details/136909882
2024-06-23 14:42:00 380KB Qt标题栏
博文《python做了一个极简的栅格地图行走机器人,到底能干啥?[第四弹]——解锁路径自动规划功能》我们用python手搓了一个极其简单的行走机器人,建立了机器人速度控制模型,具有: 带UI 雷达测距 键盘控制行走功能, 加速设置 雷达数据的可视化 任意地图尺寸的创建 任意障碍物数量的随机生成 编辑地图功能 自动避障功能 自动路径规划模块 路径自动控制
2024-06-23 14:09:50 61KB python 编程语言
注册用户可以绑定自己域名,用来做防封。支持直连、跳转、框架、密码访问等。不用购买大量域名来做防封。支持自定义广告。 可以设置用户等级权限用来盈利。 专业的短网址源码,完整的后台管理、功能齐全的用户面板、用户系统、社交分享、短网址统计、短网址自定义、多国语言支持、社交分享以及API系统等。
2024-06-23 08:41:12 2.58MB 网址生成
1
问题背景: 假期到了,你打算制定一个假期旅行计划,连续游玩若干个城市,假设旅行中的交通成本与城市间的旅行距离成正比。同时,你需要携带一定的出游物品,这些物品有不同的体积和重要度,但是你的行李箱有一定的容量限制。为了使你的旅行更加愉快,你希望:  选择最佳的旅游路线,使得总旅行中的交通成本最低。  选择最佳的物品,使得在满足背包容量限制的情况下,重要度最大。 问题 1:旅游路线优化 任务描述:  设定若干个旅游城市(至少 10 个),并给出每个城市位置坐标。  建立旅行商问题(TSP)的数学模型,目标是找到一条路径,每个城市只访问一次,最终回到起点城市,并且使得总旅行交通成本最低。  采用遗传算法,使用 MATLAB 编程实现 TSP 的求解。 给出结果分析。 具体要求:  描述 TSP 的背景和重要性。  提供目标旅游城市的坐标位置,和单位距离的旅行交通成本,并解释数据来源(可以是虚拟数据,言之成理即可),以坐标值计算城市间的平面直线距离作为旅行距离。  建立 TSP 的数学模型,包括目标函数和约束条件。  编写 MATLAB 代码求解 TSP 问题(要求附上主要代
2024-06-22 23:07:51 1KB matlab TSP算法
1