本文讲叙了如何根据采集来的肌电信号进行特征计算,并进行了不同种方法的计算和求值
2021-03-29 13:09:52 1.25MB EMG 特征提取
1
用python3+opencv3做的中国车牌识别,包括算法和客户端界面,只有2个文件,surface.py是界面代码,predict.py是算法代码,界面不是重点所以用tkinter写得很简单。 ### 使用方法: 版本:python3.4.4,opencv3.4和numpy1.14和PIL5 下载源码,并安装python、numpy、opencv的python版、PIL,运行surface.py即可 ### 算法实现: 算法思想来自于网上资源,先使用图像边缘和车牌颜色定位车牌,再识别字符。车牌定位在predict方法中,为说明清楚,完成代码和测试后,加了很多注释,请参看源码。车牌字符识别也在predict方法中,请参看源码中的注释,需要说明的
2021-03-29 09:00:02 13.6MB LPR
1
UCF101 is provided by University of Central Florida.本数据集由中央佛罗里达大学提供。 UCF101_TrainTestSplits-DetectionTask_datasets.zip UCF101_TrainTestSplits-RecognitionTask_datasets.zip
2021-03-27 10:36:27 110KB 数据集
1
Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sen- sors, variations due to illumination, and viewpoint among others, com- puter vision applications present a very natural test bed for evaluating domain adaptation methods. In this monograph, we provide a compre- hensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, we discuss three adaptation scenarios namely, (i) unsupervised adap- tation where the “source domain” training data is partially labeled and the “target domain” test data is unlabeled, (ii) semi-supervised adaptation where the target domain also has partial labels, and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all these topics we discuss existing adaptation techniques in the literature, which are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations. These techniques have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept clas- sification, and person detection. We then conclude by analyzing the challenges posed by the realm of “big visual data”, in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability, and draw parallels with the efforts from vision community on image transformation models, and invariant descriptors so as to facilitate im- proved understanding of vision problems under uncertainty.
2021-03-25 12:47:49 2.74MB 目标识别
1
该代码实现了用户组的操作,以及对用户人脸的添加,删除操作,有兴趣的朋友,请自行下载。
2021-03-22 22:33:55 269KB Face_Recognition 人脸识别 百度AI QT5
1
本资源包含Pattern Recognition And Machine Learning(Bishop编写)的英文版、马春鹏翻译的中文版、章节习题答案、张兆翔老师的PPT、书中的所有图。感谢无私公开这些资料的作者。
2021-03-20 13:19:57 46.89MB Bishop 答案
1
压缩包文件有: 1.PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M.BISHOP 2.SOLUTIONS TO EXERCISES WEB-EDITION(答案)
2021-03-20 13:11:55 16.67MB 模式识别
1
Deep_Learning_for_Distant_Speech_Recognition Mirco Ravanelli
2021-03-19 15:15:36 5.29MB DeepLearning Distant Speech Recognition
Deep_Learning_for_Hand_Gesture_Recognition_on_Skeletal_Data Guillaume Devineau
2021-03-19 15:15:07 280KB DeepLearning HandGesture Recognition Skeletal
比较轨迹聚类方法 这是我的模式识别课程学期项目。 目标是在民用飞行数据上比较4种聚类算法(k型,高斯混合模型,dbscan和hdbscan)。 可以在report.pdf文件中找到更多详细信息。 产生的集群如下所示: 应用轨迹分割以减少采样点的数量,并使用hausdorff距离比较轨迹之间的相似性。 更新(2019年2月) 添加了一个演示项目的每个步骤。 首先请看一下,它比项目的其他部分更短,更容易理解。 它还在公共数据集上显示了这些步骤。 公开数据集: 集群轨迹:
1