Domain Adaptation for Visual Recognition

上传者: giscl | 上传时间: 2021-03-25 12:47:49 | 文件大小: 2.74MB | 文件类型: PDF
Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sen- sors, variations due to illumination, and viewpoint among others, com- puter vision applications present a very natural test bed for evaluating domain adaptation methods. In this monograph, we provide a compre- hensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, we discuss three adaptation scenarios namely, (i) unsupervised adap- tation where the “source domain” training data is partially labeled and the “target domain” test data is unlabeled, (ii) semi-supervised adaptation where the target domain also has partial labels, and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all these topics we discuss existing adaptation techniques in the literature, which are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations. These techniques have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept clas- sification, and person detection. We then conclude by analyzing the challenges posed by the realm of “big visual data”, in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability, and draw parallels with the efforts from vision community on image transformation models, and invariant descriptors so as to facilitate im- proved understanding of vision problems under uncertainty.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明