人脸识别 通过深度学习实现的人脸检测和识别系统。 人脸数据集 非人脸数据集 带有滑动窗口的人脸检测
2022-05-16 19:41:53 648.25MB deep-neural-networks tensorflow keras python3
1
画面质量 描述 图像质量是用于自动图像质量评估(IQA)的开源软件库。 依存关系 Python 3.8 (开发中)Docker 安装 该软件包是公共的,并托管在PyPi存储库中。 要将其安装在您的机器中 pip install image-quality 例子 安装image-quality包之后,您可以在python终端中运行以下命令来测试它是否已成功安装。 >>> import imquality.brisque as brisque >>> import PIL.Image >>> path = 'path/to/image' >>> img = PIL.Image.open(path) >>> brisque.score(img) 4.9541572815704455 发展 如果添加新的tensorflow数据集或修改zip文件的位置,则必须更新url校验和。 您可以在以下找到
2022-05-16 19:04:57 2.37MB python machine-learning computer-vision tensorflow
1
Yolo v4用于pytorch,tensorflow渴望模式和onnx(通过Trident api) 感谢 所有预先准备好的模型权重和cfg均来自官方网站: 还要感谢Ultralytics的项目,它确实很棒而且很有帮助。 yolo v4的搜索结果 让我们看看有关yolo v4(pytorch后端)的出色性能!! 更新(5/3):增强小物品 在yolo v4中,缺少缺少对小物件的检测的缺点。 我试图解决短缺问题。 我发现解决此问题的最佳方法是在stride = 8 Yolo Layer(76 * 76)中修改对象 您所需要做的就是设置YoloLayer small_item_enhance = True(仅效果76 * 76 head) for module in detector.model.modules(): if isinstance(module,Yolo
2022-05-16 19:00:41 15.94MB pytorch yolo Python
1
DeepCoNN的TensorFlow实现
2022-05-16 10:23:20 30.73MB Python开发-机器学习
1
image-classification;图像分类;场景分类;tensorflow;python代码
2022-05-16 00:04:05 162.15MB image-classi tensorflow python resnet
1
Yahoo的开放NSFW模型的Tensorflow实现 该存储库包含以tensorflow重写的的实现。 原始重量已使用提取 。 您可以在data/open_nsfw-weights.npy找到它们。 先决条件 所有代码均应与Python 3.6和Tensorflow 1.x (经1.12测试)兼容。 该模型的实现可以在model.py找到。 用法 > python classify_nsfw.py -m data/open_nsfw-weights.npy test.jpg Results for 'test.jpg' SFW score: 0.9355766177177429 NSF
2022-05-15 21:11:07 21.11MB deep-neural-networks caffe deep-learning tensorflow
1
没有AVX指令的老机器可以使用的SSE指令版本的tensorflow2.6
2022-05-15 18:40:45 280.07MB tensorflow SSE指令 无AVX指令 老机器
1
包含大部分的水果,总共有几万张图片,每个类别几千张
2022-05-14 21:05:37 689.6MB 综合资源 数据集 水果识别 tensorflow
代码实现及说明 # python 3.6 # TensorFlow实现简单的鸢尾花分类器 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets sess = tf.Session() #导入数据 iris = datasets.load_iris() # 是否是山鸢尾 0/1 binary_target = np.array([1. if x == 0 else 0. for x in
2022-05-14 19:57:27 123KB ens low ns
1
Role2Vec ⠀ ⠀ 基于学习角色的图嵌入的可扩展并行gensim实现(IJCAI 2018) 。 抽象的 随机游走是许多现有网络嵌入方法的核心。 但是,这样的算法由于使用随机游走而具有许多局限性,例如,由于这些方法所产生的特征与顶点身份相关联,因此无法转移到新的节点和图上。 在这项工作中,我们介绍了Role2Vec框架,该框架使用了归因于随机游走的灵活概念,并为泛化现有方法(例如DeepWalk,node2vec和许多利用随机游走的其他方法)奠定了基础。 我们提出的框架使这些方法可以更广泛地应用于转导和归纳学习,以及在具有属性的图上使用(如果可用)。 这是通过学习泛化到新节点和图的功能来实现的。 我们表明,我们提出的框架是有效的,平均AUC改善了16.55%,同时所需的空间比各种图形上的现有方法平均少853倍。 二阶随机游走采样方法取自的参考实现。 该模型现在也可在包中找到。
2022-05-14 17:39:27 4.35MB machine-learning research deep-learning tensorflow
1