Keras和Tensorflow 对CIFAR10的图像分类(包含多个模型)

上传者: 45508265 | 上传时间: 2022-05-13 12:06:18 | 文件大小: 1.16MB | 文件类型: ZIP
用Keras实现我们的CIFAR10的图像分类 模型有LeNet,Network_in_Network,VGG,GoogLeNet,ResNet,ResNeXt,DenseNet,SENet还有Multi-GPU的方式 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果,进行了一个简单的比较各个模型在cifar10的数据的结果 除此之外,也搭载了可视化的功能,能够对数据有一个更加清晰的认识

文件下载

资源详情

[{"title":"( 40 个子文件 1.16MB ) Keras和Tensorflow 对CIFAR10的图像分类(包含多个模型)","children":[{"title":"cifar-10-cnn","children":[{"title":"4_Residual_Network","children":[{"title":"ResNet_keras.py <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"cf10.png <span style='color:#111;'> 231.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"1_Lecun_Network","children":[{"title":"LeNet_dp_da_wd_keras.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"LeNet_dp_keras.py <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"LeNet_dp_da_keras.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"LeNet_keras.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"9_Multi-GPU","children":[{"title":"densenet_multi_gpu.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"_config.yml <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"5_Wide_Residual_Network","children":[{"title":"Wide_ResNet_keras.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"2_Network_in_Network","children":[{"title":"Network_in_Network_keras.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"Network_in_Network_bn_keras.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"6_ResNeXt","children":[{"title":"ResNeXt_keras.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"Tensorflow_version","children":[{"title":"vgg_19_pretrain.py <span style='color:#111;'> 11.76KB </span>","children":null,"spread":false},{"title":"Network_in_Network.py <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"data_utility.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"Network_in_Network_bn.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"vgg_19.py <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"for_girl","children":[{"title":"00_original.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"01_print_summary.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"03_save_pic.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"02_set_momory.py <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"doc","children":[{"title":"OpenAI-gym-install.md <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"screen.png <span style='color:#111;'> 96.52KB </span>","children":null,"spread":false},{"title":"anydesk.png <span style='color:#111;'> 501.66KB </span>","children":null,"spread":false},{"title":"run.png <span style='color:#111;'> 225.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"Ubuntu-install-cuda-tensorflow.md <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"PyTorch-install.md <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"htd","children":[{"title":"ResNet.py <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false},{"title":"run_training.sh <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 741B </span>","children":null,"spread":false}],"spread":true},{"title":"8_SENet","children":[{"title":"SENet_Keras.py <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"7_DenseNet","children":[{"title":"DenseNet_keras.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"3_Vgg19_Network","children":[{"title":"Vgg_prediction.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"test_pic","children":[{"title":"tiger.jpeg <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false},{"title":"puzzle.jpeg <span style='color:#111;'> 8.68KB </span>","children":null,"spread":false},{"title":"cat.jpg <span style='color:#111;'> 80.48KB </span>","children":null,"spread":false}],"spread":false},{"title":"Vgg19_keras.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明