多步骤提前预测 该项目的目的是研究时空数据的多步提前预测中的两个方面: 动态模型与静态模型:我们将比较几种静态模型和动态模型的性能。 动态模型都具有递归神经网络作为其体系结构的一部分。 在这些模型中,先前时间步长中的时间序列值用于导出循环网络的“状态”。 然后,将循环网络的输出扩充到数据中的其他要素,以形成完整的要素集。 相反,在静态模型中,没有递归的体系结构,并且先前时间步长上的时间序列值直接增加到其他特征上。 数据拆分方法:我们将研究将数据拆分为训练和验证模型对测试数据性能的影响的不同方法的效果。 与其他情况相比,为时间序列数据形成验证集更具挑战性。 具体来说,许多机器学习任务可以看作是插值,其中训练和测试集中的特征范围是相似的。 另一方面,时间序列预测(特别是多步提前预测)是一项外推任务。 我们要提出的问题是,在形成验证集时应考虑到这一点。 我们将研究形成验证集的不同方法。 我
2021-10-04 10:04:15 11.39MB neural-network lstm xgboost lightgbm
1
利用GS-LightGBM机器学习模型识别致密砂岩地层岩性.pdf
2021-09-25 17:02:06 2.05MB 机器学习 参考文献 专业指导
基于LightGBM优化组合模型的销售预测,葛天萌,王春露,针对超市商品销量的预测问题,本文在研究大量文献的基础上,提出了一种基于LightGBM及XGBoost组合的预测模型。该模型不仅对商品的基本
2021-09-21 08:10:14 483KB 首发论文
1
基于LightGBM的网络入侵检测系统 网络安全 网络信息安全 APT 漏洞挖掘 安全管理
2021-09-09 14:00:08 1.25MB 安全 威胁情报 法律法规 安全体系
自己手动整理的离线文档,侵权删! 内容包括: 快速入门指南 Python包的相关介绍 特性 实验 参数 参数优化 Python API 并行学习指南 LightGBM GPU教程 进阶主题 常见问题 Development Guide
2021-09-08 09:34:27 14.46MB kaggle 机器学习 数据挖掘 算法比赛
1
LightGBM win10下亲测可用,0.1版本,附最新版本的LightGBM python版安装方法
2021-09-04 17:14:25 17.67MB LightGBM Windows Win10
1
渐变光机 LightGBM是使用基于树的学习算法的梯度增强框架。 它被设计为分布式且高效的,具有以下优点: 训练速度更快,效率更高。 降低内存使用率。 更好的准确性。 支持并行和GPU学习。 能够处理大规模数据。 有关更多详细信息,请参阅。 受益于这些优势,LightGBM被广泛用于许多机器学习竞赛的中。 在公共数据集上进行的表明,LightGBM可以在效率和准确性上均优于现有的Boosting框架,并且显着降低了内存消耗。 此外, 表明,LightGBM可通过使用多台机器进行特定设置的训练来实现线性加速。 入门和文档 我们的主要文档位于并从该存储库生成。 如果您不熟悉LightGBM,请按照站点上进行。 接下来,您可能需要阅读: 显示常见任务命令行用法的。 LightGBM支持的和算法。 是您可以进行的自定义的详尽列表。 和可以加快计算速度。 是有关超参数的详细指南。 为LightGBM超参数()提供自动调整。 贡献者文档: 。 查阅《 。 新闻 请参考页面上的变更日志。 一些重要的更新日志可在“页面上找到。 外部(非官方)存储库 Optun
2021-09-04 16:56:17 7.03MB microsoft python machine-learning data-mining
1
LightGBM使用pdf
2021-09-04 16:52:27 828KB LightGBM
1
2021泰迪杯C3-基于LDA主题模型和LightGBM分类模型的旅游目的地印象分析.pdf
对附件一数据建立了总里程等相关因素与成交价格、指导价格、线路成本的多元线性回归模型;为了提高线路价格的预测精度,又建立了基于多因素的 LightGBM 回归模型并与多元线性回归模型进行比较;最后,以历史成功交易的平均溢价比为参考,根据不同需求紧急程度为附件 2 的任务进行了三次报价定价
2021-08-28 10:53:47 18.53MB python 多元线性回归 Lightgbm回归
1