【关于 NLP】 那些你不知道的事 作者:杨夕 项目地址: 个人介绍:大佬们好,我叫杨夕,该项目主要是本人在研读顶会论文和复现经典论文过程中,所见、所思、所想、所闻,可能存在一些理解错误,希望大佬们多多指正。 NLP 面经地址: 目录 【关于 信息抽取】 那些的你不知道的事 【关于 实体关系联合抽取】 那些的你不知道的事 【关于 命名实体识别】那些你不知道的事 【关于 关系抽取】那些你不知道的事 【关于 文档级别关系抽取】那些你不知道的事 【关于 知识图谱 】 那些的你不知道的事 【关于 实体链指篇】 那些的你不知道的事 【关于 实体消歧 】 那些的你不知道的事 【关于KGQA 】 那些的你不知道的事 【关于Neo4j 】 那些的你不知道的事 【关于 细粒度情感分析】 那些的你不知道的事 【关于 主动学习】 那些的你不知道的事 【关于 对抗训练】 那些的你不知道的事 【关于 GCN in
2022-01-03 15:01:38 294.61MB attention bert gcn relation-extraction
1
Fall_detection_by_gcn 一些结果: 真实环境中的检测:
2021-12-28 13:02:02 6.14MB
1
GCN与GAT入门的基于pytorch的代码 打好断点
2021-12-27 20:10:16 750KB gcn GAT 图计算 机器学习
1
NER的BERT-BILSTM-GCN-CRF 在原本BERT-BILSTM-CRF上融合GCN和词性标签等做NER任务 数据格式 高B-剧种B-名词腔I-剧种I-名词:OO马B-人名B-名词平I-人名I-名词所OO着O B动词扶O B动词贫O I动词小O B -名词I O-名词 运行
2021-12-06 16:00:54 182KB Python
1
DeepGCNGCN可以像CNN一样深入吗? 在这项工作中,我们提出了成功训练非常深的GCN的新方法。 我们从CNN借用概念,主要是残差/密集连接和膨胀卷积,然后将其适应GCN架构。 通过广泛的实验,我们证明了这些深层GCN框架的积极作用。 概述 我们进行了广泛的实验,以展示不同的组件(#Layers,#Filters,#Nearest Neighbors,Dilation等)如何影响DeepGCNs 。 我们还提供了针对不同类型的深层GCN(MRGCN,EdgeConv,GraphSage和GIN)的消融研究。 进一步的信息和详细信息,请联系和 。 要求 (仅用于可视化) (仅用于可视化) conda环境 为了设置运行所有必要依赖项的conda环境, conda env create -f environment.yml 入门 您将在文件夹中找到有关如何使用我们的代码对3
1
MSDNet-具有可分离内核的可重复性和应用GCN块 该存储库包含“ ”的复制代码(在PyTorch中)。 内容 介绍 MSDNet是一种用于图像分类的新颖方法,在测试时会受到计算资源的限制。 该存储库提供了基于本文提供的技术描述的实现。 当前,此代码实现对Cifar-10和Cifar-100的支持。 此外,此代码集成了对基于GCN的层(而不是常规卷积层)的支持,以减少模型参数。 用法 依存关系 火车 例如,使用以下命令在Cifar10上训练MSDNet python3 main.py --model msdnet -b 64 -j 2 cifar10 --msd-blocks 10 --msd-base 4 \ --msd-step 2 --msd-stepmode even --growth 6-12-24 --gpu 0 例如,使用以下命令在带有GCN块的Cifar100上
2021-11-18 10:26:20 2.45MB Python
1
机器学习课程项目 介绍 通过GCN对SMILES表示的化学分子毒性进行预测。信息更多请参见 。 本项目通过一套Cloud ML Infra管理上百个机器学习模型,实现了“一次实施,随处运行”。仓库里包含了整个infra的相关脚本和代码。 report.pdf是本项目的实验报告。 入门 在使用这套工具前,你需要安装必要的工具。 brew install minio/stable/mc conda install tqdm tensorflow-gpu=1.15 keras=2.2.4 numpy pandas pip install minio 进行实验 在项目根目录下,使用run.sh执行指令。 ./run.sh python ./src/train.py 如果程序出错,数据不会被上传到对象存储。您可以手动上传。 ./save.sh 可以通过list.sh列出所有实验。 ./li
2021-11-18 10:23:43 1.79MB Python
1
图神经网络整理.pptx
2021-11-15 15:07:41 1.79MB 机器学习 GNN GCN
1
GCN_predict-Pytorch 交通流量预测。 用PyTorch实现图卷积网络(GCN,GAT,Chebnet) 要求: -火炬 -脾气暴躁 -熊猫 -Matplotlib 数据集示例: 数据集由Caltrans绩效评估系统(PEMS-04)收集 数量:307个探测器 日期:2018年1月至2月(2018.1.1——2018.2.28) 特色:流动,占据,速度。 探索数据分析: 1,具有流量,占用和速度三个特点,一是对数据分布进行可视化分析 2.运行代码:python data_view.py 3)每个节点(检测器)都有三个特征,但是两个特征的数据分布基本上是固定的,因此我们只采用一维特征。 读取数据集: 在traffic_dataset.py文件中,get_adjacent_matrix和get_flow_data函数用于读取相邻的矩阵和流数据。 模型训练: 在tra
2021-11-12 15:38:20 39.65MB 附件源码 文章源码
1
text_gcn 本文中Text GCN的实现: 梁耀,毛成胜,罗源。 “图卷积网络用于文本分类。” 在第33届AAAI人工智能会议(AAAI-19)中 要求 Python 2.7或3.6 Tensorflow> = 1.4.0 再现结果 运行python remove_words.py 20ng 运行python build_graph.py 20ng 运行python train.py 20ng 在为其他数据集生成结果时,将上述3个命令行中的20ng更改为R8 , R52 , ohsumed和mr 。 输入数据示例 /data/20ng.txt表示文档名称,培训/测试组,文档标签。 每行都是一个文档。 /data/corpus/20ng.txt包含每个文档的原始文本,每行对应/data/20ng.txt的相应行 prepare_data.py是准备自己的数据的示例,请注意,文档或句子中的“ \ n”已删除。 归纳版 文本GCN的归纳版本是 ,其中培训过程中未包括测试文档。
1