cuda+python+pytorch安装说明
2022-08-11 21:05:42 1.45MB 人工智能
1
STGCN模型文件 图卷积必备模型文件(已更新),结果比原始有优化 包括三种模型文件:st_gcn.kinetics.pt、st_gcn.ntu-xsub.pt、st_gcn.ntu-xview.pt openpose获取姿态文件,可采用新的姿态估计模型,好的姿态数据对动作识别会有提升 双流法对结果也会有优化,但目前结合的不够理想
1
基于GCN的节点分类实战数据.zip
2022-06-29 09:06:33 122KB 数据集
下采样matlab代码快速人类动作识别 介绍 该存储库保存了该项目的代码库和数据集: 识别人类快速动作的时空图卷积网络 先决条件 Python3(> 3.5) 资料准备 我们对NTU-RGB + D的3D骨骼数据进行了实验。 预处理的数据可以从下载。 下载数据后,将“ NTU-RGB-D”文件夹解压缩到路径中。 下采样 为了创建快速动作的数据集,我们对NTU-RGB + D数据集进行下采样。 下采样是通过拍摄一帧然后保留另一帧,将帧数减半来完成的。 运行“ downsample.py”以对所需数据进行下采样。 数据缩减(可选) 我们提供“ create_small_data.py”,通过从所有60个动作中选择多个动作来从原始数据中创建较小的数据。 可以根据代码上的标签在代码中选择所需的操作。 可视化 我们在MATLAB上提供NTU-RGB + D的3D骨骼数据的可视化。 可以在“可视化”文件夹中找到更多详细信息。 训练 可以通过运行“ main.py”来训练模型。 结果将显示在“结果”文件夹中。 如果使用较小的数据,则需要对代码进行一些修改,这些修改在代码中有详细说明。 结果 此处显示
2022-06-06 11:12:26 755KB 系统开源
1
图网络相关论文和代码(gnn gcn graphsage gat gas dgcn sim-gnn)
2022-06-03 17:05:07 331.98MB 网络 文档资料
1
GCN开山之作精读,主观翻译和详细公式推导,半监督图节点学习问题 最近在阅读GCN网络的文献《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》,有一些收获,想分享给大家,希望对大家有帮助。我会主观翻译前半部分内容,并把我当时陷入思考的句子进行解释,解释部分用中文中括号标注【】,之后我会向大家详细推导一下各个数学公式和理解。本人学术能力不高,如有错误,还望批评指正。建议具备一些图和深度学习理论基础者拜读。在word中编辑的,因此都是图片,见谅。
2022-05-16 16:05:52 349KB 学习 文档资料
1
图卷积网络用于高光谱图像分类 , ,,,, 该工具箱中的代码实现了 。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 D. Hong,L。Gao,J。Yao,B。Zhang,A。Plaza,J。Chanussot。 用于高光谱图像分类的图卷积网络,IEEE Trans。 Geosci。 遥感,2020,DOI:10.1109 / TGRS.2020.3015157。 @article{hong2020graph, title = {Graph Convolutional Networks for Hyperspectral Image Classification}, author = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanusso
2022-05-10 20:53:01 41.38MB Python
1
人工智能-图分类-自注意力-使用基于自注意力池化机制结合GCN模型实现图分类 所需环境: 1.torch:1.4.0 2.torch_scatter:2.0.3 3.scipy:1.4.1 数据集 1.DD:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/DD.zip 2.COX2:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/COX2.zip 3.BZR:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/BZR.zip 运行方式
2022-04-23 19:06:03 5.36MB 图分类 自注意力 GCN 池化
资源自带数据、模型,运行main.py可以直接跑出结果。 内容概要:资源里有详细介绍原理。 适合人群:具备一定python编程基础人员 能学到WHVG和GCN_GIN+的滚动轴承故障诊断流程 阅读建议:过查看注释,修改源码,添加断点,编译等,帮助自己充分理解源码。
2022-04-09 12:06:35 7.51MB 故障诊断 tensorflow 西储大学 gcn
GCN节点分类Cora数据集
2022-03-23 21:09:46 908KB GCN
1