复数域神经网络;全面解析;适合新手和小白
2024-04-16 16:57:29 185KB
1
Deep Learning With Python_中文版+英文版+代码 目前来看是最全的
2024-04-16 10:23:06 29.91MB PYTHON Deep
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
matlab精度检验代码深度学习 这是针对KTH 2017的个别课程分配的存储库。此存储库中的代码主要在Matlab中完成,并且训练过程中涉及的操作(例如,梯度计算和参数更新)以一般的方式(低级)实现。 数据集 对于作业1-3 对于作业4 内容 作业1:具有多类输出的一层网络(测试准确度:40.42%) 报告:+ 作业2:具有多层输出的两层网络(测试准确度:54.06%) 报告:+ 作业3:具有多类输出的k层网络(测试准确度:54.8%) 报告:+ 作业4:香草RNN逐个字符地合成英文文本 报告:+
2024-03-29 04:08:13 184.2MB 系统开源
1
本资源是本人在使用pytorch过程中知识的总结与积累,主要包括以下内容: 1. 数据预处理 2. 梯度操作 3. 网络模型搭建 4. 保存模型参数 5. GPU使用问题 6. 遇到的巨坑
2024-03-28 21:40:10 1.19MB PyTorch Deep-Learning
1
深流引导的视频修复 | | | 安装与要求 该代码已在pytorch = 0.4.0和python3.6上进行了测试。 请参阅requirements.txt以获取详细信息。 或者,您可以使用提供的运行它。 安装python软件包 pip install -r requirements.txt 安装flownet2模块 bash install_scripts.sh 配件 此仓库中包含三个组件: 视频修复工具:DFVI 提取流程:FlowNet2(由修改) 图像修复(从重新实现) 用法 要使用我们的视频修复工具删除对象,建议将帧放置在xxx/video_name/frames ,并将每个帧的遮罩放置在xxx/video_name/masks 。 并且请从下载演示和模型权重的资源。 包含帧和蒙版的示例演示已放入演示中,运行以下命令将获得结果: python tools/v
2024-03-16 12:27:39 47.03MB Python
1
行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别行人充重识别
2024-03-08 20:34:57 418KB 人工智能
1
深冲板织构演变的实验研究,刘雅政,孙景宏,厚向各向异性和平面各向同性是深冲板深冲性能的保证。钢板深冲性能由其晶体学织构控制。{111}<112> 和 {111}<110>是其理想织构组分,由�
2024-02-24 09:17:57 482KB 首发论文
1
作者 项目 文献资料 建置状态 代码质量 覆盖范围 NumPyNet Linux / MacOS : Windows : 编码: 编码节拍: 纯NumPy中的神经网络-NumPyNet 在神经网络模型的纯Numpy中实现。 NumPyNet支持语法非常接近Keras之一,但它使用只写了Numpy功能:这种方式很轻,快速安装和使用/修改。 理论 先决条件 安装 效率 用法 贡献 参考 作者 执照 致谢 引文 概述 NumPyNet是作为研究神经网络模型的教育框架而诞生的。 编写该指南的目的是平衡代码的可读性和计算性能,并提供大量文档,以更好地理解每个脚本的功能。 该库是用纯Python编写的,唯一使用的外部库是Numpy (科学研究的基本软件包)。 尽管所有常见的库都通过广泛的文档进行了关联,但对于新用户而言,通常很难在其中引用的许多超链接和论文中四处移动。 NumPyNet试
1