在数据分析领域,关联规则挖掘是一种常用的技术,用于发现数据集中不同项之间的有趣关系。Apriori 算法是关联规则挖掘的经典算法之一,尤其在零售业中的商品购物篮分析中应用广泛。本项目深入探讨了如何利用 Apriori 算法来揭示消费者购买行为的模式。 我们要理解 Apriori 算法的基本原理。Apriori 算法基于“频繁集”概念,即如果一个项集经常出现在数据库中,那么它的所有子集也必须频繁。它通过两阶段过程进行:(1) 构建频繁项集,(2) 生成关联规则。在构建频繁项集时,算法自底向上地生成候选集,并通过数据库扫描验证其频繁性,避免无效的候选项生成。一旦得到频繁项集,算法便会生成满足最小支持度和置信度阈值的关联规则。 在这个项目中,我们首先需要准备数据。数据通常包含顾客的购物篮记录,每一行代表一个购物篮,列则为购买的商品。在预处理阶段,数据可能需要清洗、转换和编码,以适应算法的需求。例如,将商品名称转换为整数编码,便于计算机处理。 接下来,我们将使用编程语言(如Python)实现 Apriori 算法。Python 中有许多库支持关联规则挖掘,如 `mlxtend` 或 `apyori`。这些库提供了 Apriori 函数,只需传入交易数据和最小支持度与置信度参数即可执行算法。运行后,我们能得到频繁项集和关联规则列表。 运行结果通常包括每个规则的支持度和置信度。支持度表示规则覆盖的交易比例,而置信度是规则发生的概率。例如,如果规则 "买牛奶 -> 买面包" 的支持度是 0.3,置信度是 0.7,意味着在所有购物篮中有 30% 包含牛奶和面包,且一旦买了牛奶,70% 的情况下会买面包。 项目报告中,我们会详细解释每一步操作,包括数据处理、算法实现、结果解释等。报告应展示关键代码片段,以便读者理解实现过程。同时,会通过图表和案例来可视化结果,使非技术背景的人也能理解发现的购物模式。 关联规则挖掘的结果可指导商家进行商品推荐或制定营销策略。例如,发现“买尿布 -> 买啤酒”的规则后,商家可能会在尿布区附近放置啤酒,以刺激连带销售。此外,还可以通过调整最小支持度和置信度阈值,挖掘出不同强度的相关性,帮助决策者制定更精细的策略。 本项目通过 Apriori 算法对商品购物篮数据进行了深入分析,揭示了消费者购买行为的潜在规律。通过学习这个项目,读者不仅可以掌握关联规则挖掘的基本方法,还能了解到如何将这些发现应用于实际商业场景中。
2024-07-06 18:50:08 912KB
1
【作品名称】:基于 python 实现的自动售货机商品检测检索 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于自动售货机摄像头拍摄的静态数据,进行商品的检测,并按照图像检索的方式确定商品类别 阶段一 检测: Faster RCNN : resnext101_32x8d + ROIAlign objectness二分类,CIOU Loss 检索: CE Loss 预训练 Triplet Loss, ArcFace 微调 KNN, k=10, cosine distance 商品库图像数量平衡,提取特征平衡两种方案,防止KNN聚类的对于少量样本(商品库样本数量最少为2)的类别无法有效聚类。
2024-07-03 14:18:11 7.01MB python 商品检测 自动售卖机
唯品会口红类商品数据集 包含字段: 商品标题 标题链接 图片链接 图片1 价格标识 折扣后价格 原价格 折扣 关键词 唯品会口红数据.csv
2024-06-28 10:15:33 74KB 数据集
1
资源中包含了诸多关于商品零售信息的资源,可作为数据分析与可视化的数据
2024-06-28 09:40:10 6.55MB 数据集 python 数据分析 数据可视化
1
基于k-means算法实现商品的聚类研究.pdf
2024-06-27 10:53:30 2.36MB
1
商品详情页.psd
2024-06-26 21:12:11 688KB
1
python 获取京东所有类别,并按照类别抓取该类别下所有商品的价格信息,商品名称以及评论个数,并将此信息按照类别存储到txt文档中。
1
问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各 品类及单品销售量的分布规律及相互关系。 问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成 定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略, 使得商超收益最大。 问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可 售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023 年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各 品类蔬菜商品需求的前提下,使得商超收益最大。 问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据, 这些数据对解决上述问题有何帮助,请给出你们的意见和理由 完整的解题思路,完整的解题代码,全部包含
2024-05-28 08:34:36 37.47MB 数学建模
1
html5 3D交互式房间购物商品展示特效 html5 3D交互式房间购物商品展示特效 html5 3D交互式房间购物商品展示特效 html5 3D交互式房间购物商品展示特效
2024-05-23 12:14:09 793KB html5 
1
asp .net 项目源码,记得还有论文等文献,适合用于毕业设计、课程设计、练手学习等
2024-05-22 15:01:49 1.26MB asp .net web sql
1