基于 python 实现的自动售货机商品检测检索

上传者: 44010641 | 上传时间: 2024-07-03 14:18:11 | 文件大小: 7.01MB | 文件类型: ZIP
【作品名称】:基于 python 实现的自动售货机商品检测检索 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于自动售货机摄像头拍摄的静态数据,进行商品的检测,并按照图像检索的方式确定商品类别 阶段一 检测: Faster RCNN : resnext101_32x8d + ROIAlign objectness二分类,CIOU Loss 检索: CE Loss 预训练 Triplet Loss, ArcFace 微调 KNN, k=10, cosine distance 商品库图像数量平衡,提取特征平衡两种方案,防止KNN聚类的对于少量样本(商品库样本数量最少为2)的类别无法有效聚类。

文件下载

资源详情

[{"title":"( 162 个子文件 7.01MB ) 基于 python 实现的自动售货机商品检测检索","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 356.82KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 75.14KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 61.52KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 60.04KB </span>","children":null,"spread":false},{"title":"loss.jpg <span style='color:#111;'> 50.27KB </span>","children":null,"spread":false},{"title":"9.jpg <span style='color:#111;'> 48.18KB </span>","children":null,"spread":false},{"title":"8.jpg <span style='color:#111;'> 47.92KB </span>","children":null,"spread":false},{"title":"predictions.json <span style='color:#111;'> 6.82MB </span>","children":null,"spread":false},{"title":"predictions.json <span style='color:#111;'> 4.78MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"BlackoakStd.otf <span style='color:#111;'> 45.04KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 1.27MB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 800.46KB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 102.86KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 35.93KB </span>","children":null,"spread":false},{"title":"train_b.png <span style='color:#111;'> 12.46KB </span>","children":null,"spread":false},{"title":"train_b.png <span style='color:#111;'> 12.46KB </span>","children":null,"spread":false},{"title":"train_a.png <span style='color:#111;'> 12.36KB </span>","children":null,"spread":false},{"title":"train_a.png <span style='color:#111;'> 12.36KB </span>","children":null,"spread":false},{"title":"fastrcnn.py <span style='color:#111;'> 22.89KB </span>","children":null,"spread":false},{"title":"fastrcnn.py <span style='color:#111;'> 15.50KB </span>","children":null,"spread":false},{"title":"rpn.py <span style='color:#111;'> 14.18KB </span>","children":null,"spread":false},{"title":"rpn.py <span style='color:#111;'> 14.18KB </span>","children":null,"spread":false},{"title":"loss_yolo3.py <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"_criterion.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"_criterion.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"_criterion.py <span style='color:#111;'> 12.86KB </span>","children":null,"spread":false},{"title":"efficient_utils.py <span style='color:#111;'> 12.48KB </span>","children":null,"spread":false},{"title":"efficient_utils.py <span style='color:#111;'> 12.35KB </span>","children":null,"spread":false},{"title":"efficient_utils.py <span style='color:#111;'> 12.35KB </span>","children":null,"spread":false},{"title":"resnext101_32x8d.py <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"resnext101_32x8d.py <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"efficientnet.py <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false},{"title":"efficientnet.py <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false},{"title":"inference2.py <span style='color:#111;'> 9.63KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 9.52KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 9.49KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 9.22KB </span>","children":null,"spread":false},{"title":"efficientnet.py <span style='color:#111;'> 8.90KB </span>","children":null,"spread":false},{"title":"data_gen.py <span style='color:#111;'> 8.63KB </span>","children":null,"spread":false},{"title":"YOLO.py <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 8.22KB </span>","children":null,"spread":false},{"title":"data_gen.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"data_gen.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"data_gen.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"mixmethods.py <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"mixmethods.py <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"mixmethods.py <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"mixmethods.py <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"submit.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"inference_video.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"knn.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"_fit.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"productnet.py <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"productnet.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"ttt.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"_fit.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"detection.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"_reducelr.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"anchorgenerator.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"anchorgenerator.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"anchorgenerator.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"无差别做所有扩充.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"cam.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"cam.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"cam.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"cam.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"扩充数量少的类别.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"_fit_tmp.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"_reducelr.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"_reducelr.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"backbone.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"transform_coco.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"vgg16.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"vgg16.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"_fit.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"object_cfg.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"anchors.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"classfication.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"backbone.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"backbone.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"FasterRcnn.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"FasterRcnn.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"_modelcheckpoint.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"_modelcheckpoint.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"_modelcheckpoint.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"_history.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明