基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力,纯数字识别率高达 99.99%,数字+字母识别率 96%
1
用Pytorch实现我们的CIFAR10的图像分类 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果 可以利用所有的模型权重进行迁移学习 除此之外,还有所有迁移学习的代码,可以利用迁移学习的代码对猫狗数据集进行训练学习
2023-03-01 10:03:42 847.92MB 深度学习 图像分类 迁移学习 人工智能
使用最新的github源程序打包的单个可执行程序Labelme.exe文件! 省去了安装anaconda环境后再配置Label环境的步骤,直接双击Windows环境下使用,便于协同标注,提高标注效率。 labelme工具主要用于图像分割领域制作自己的数据集; labelme可以自己制作像MaskRCNN模型做图像分割训练需要的数据集。
2023-02-28 15:50:55 58.3MB 深度学习 数据标注 Labelme.exe
1
随着深度学习的研究热潮,近年来对车辆目标的检测逐步从机器学习方法转变为深度学习方法.目前,大多数深度学习方法对车辆目标的检测都存在不同程度的错检漏检问题.针对车辆目标检测中存在的小目标的错检漏检、截断式待检目标的漏检和重叠遮挡待检目标的漏检等问题,提出一种基于增量学习数据集的车辆目标检测方法,该方法与Faster R-CNN算法结合对车辆目标实现检测和分类.在实验的最后,分别从主观判断和客观检测数据两个方面,对比了车辆目标检测中未使用增量学习方法和使用增量学习方法对实验结果的影响.实验证明,使用基于增量学习和Faster R-CNN的车辆目标检测方法在主观判断方面对错检漏检的目标有明显地改善效果,从客观数据分析,使用该方法与未使用增量学习方法相比,VGG16网络mAP值提升了4%,ResNet101网络mAP值提升了6%.
2023-02-26 22:41:37 1.19MB 深度学习 机器学习 增量学习 Faster
1
对比分析主流的深度学习框架:TensorFlow是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写C++或CUDA代码;Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在TensorFlow出现之前一直是深度学习领域 GitHub star 最多的项目),目前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护;Theano 诞生于2008年,由蒙特利尔大学 Lisa Lab 团队开发并维护,是一个高性能的符号计算及深度学习库。
2023-02-26 11:22:07 163KB 深度学习
1
该资源包涵这本书的英文版,中文版和课本中的代码。本资源都是高清版本
2023-02-26 10:38:17 77.3MB 机器学习 深度学习 实践教程
1
行人跌倒数据集(VOC格式)
2023-02-25 22:57:26 62.05MB 深度学习 目标检测 计算机视觉
1
基于深度学习的肿瘤辅助诊断系统,以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设和前端访问功能。 4 提交
2023-02-24 15:59:51 3.52MB 脑肿瘤检测 深度学习
1
用于实现火焰和烟雾检测的数据集 3000张 标签为json格式 直接下载可用
2023-02-24 15:16:12 390.04MB 深度学习 目标检测 YOLO
1