Pytorch对CIFAR10的图像分类全套代码(包含多个模型)

上传者: 45508265 | 上传时间: 2023-03-01 10:03:42 | 文件大小: 847.92MB | 文件类型: RAR
用Pytorch实现我们的CIFAR10的图像分类 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果 可以利用所有的模型权重进行迁移学习 除此之外,还有所有迁移学习的代码,可以利用迁移学习的代码对猫狗数据集进行训练学习

文件下载

资源详情

[{"title":"( 82 个子文件 847.92MB ) Pytorch对CIFAR10的图像分类全套代码(包含多个模型)","children":[{"title":"model","children":[{"title":"vgg16_50.pth <span style='color:#111;'> 58.26MB </span>","children":null,"spread":false},{"title":"ResNet34_20.pth <span style='color:#111;'> 81.34MB </span>","children":null,"spread":false},{"title":"LeNet5.pth <span style='color:#111;'> 248.62KB </span>","children":null,"spread":false},{"title":"VGG16.pth <span style='color:#111;'> 58.26MB </span>","children":null,"spread":false},{"title":"Denset_improve_300.pth <span style='color:#111;'> 4.23MB </span>","children":null,"spread":false},{"title":"Denset_improve.pth <span style='color:#111;'> 4.23MB </span>","children":null,"spread":false},{"title":"Mynet_20.pth <span style='color:#111;'> 20.99MB </span>","children":null,"spread":false},{"title":"AlexNet_20.pth <span style='color:#111;'> 496.86KB </span>","children":null,"spread":false},{"title":"MoblieNet.pth <span style='color:#111;'> 8.79MB </span>","children":null,"spread":false},{"title":"googLeNet_50.pth <span style='color:#111;'> 23.69MB </span>","children":null,"spread":false},{"title":"ResNet50.pth <span style='color:#111;'> 90.06MB </span>","children":null,"spread":false},{"title":"ResNet.pth <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"Mynet.pth <span style='color:#111;'> 20.99MB </span>","children":null,"spread":false},{"title":"ResNet34.pth <span style='color:#111;'> 81.34MB </span>","children":null,"spread":false},{"title":"LeNet5_20.pth <span style='color:#111;'> 248.62KB </span>","children":null,"spread":false},{"title":"AlexNet.pth <span style='color:#111;'> 496.86KB </span>","children":null,"spread":false},{"title":"GoogLeNet.pth <span style='color:#111;'> 23.69MB </span>","children":null,"spread":false},{"title":"ResNet34_improve.pth <span style='color:#111;'> 81.34MB </span>","children":null,"spread":false},{"title":"Denset_improve2_300.pth <span style='color:#111;'> 15.53MB </span>","children":null,"spread":false},{"title":"Denset.pth <span style='color:#111;'> 4.23MB </span>","children":null,"spread":false},{"title":"Denset_improve2.pth <span style='color:#111;'> 15.53MB </span>","children":null,"spread":false},{"title":"ResNet34_50.pth <span style='color:#111;'> 81.34MB </span>","children":null,"spread":false},{"title":"VGG16_20.pth <span style='color:#111;'> 58.26MB </span>","children":null,"spread":false},{"title":"ResNet50_20.pth <span style='color:#111;'> 90.06MB </span>","children":null,"spread":false},{"title":"GoogLeNet20.pth <span style='color:#111;'> 23.69MB </span>","children":null,"spread":false},{"title":"Denset_20.pth <span style='color:#111;'> 4.23MB </span>","children":null,"spread":false}],"spread":false},{"title":"CIFAR10_note","children":[{"title":"Pytorch CIFAR10图像分类 ResNet篇.md <span style='color:#111;'> 39.12KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 工具函数utils篇.md <span style='color:#111;'> 17.03KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 数据加载篇.md <span style='color:#111;'> 7.34KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"dense_cifar.jpg <span style='color:#111;'> 263.82KB </span>","children":null,"spread":false},{"title":"vgg.png <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"cifar.png <span style='color:#111;'> 123.05KB </span>","children":null,"spread":false},{"title":"LeNet5.png <span style='color:#111;'> 272.62KB </span>","children":null,"spread":false},{"title":"Inception.jpg <span style='color:#111;'> 499.63KB </span>","children":null,"spread":false},{"title":"residual2.png <span style='color:#111;'> 110.71KB </span>","children":null,"spread":false},{"title":"resnet_table.png <span style='color:#111;'> 144.43KB </span>","children":null,"spread":false},{"title":"Bottleneck.png <span style='color:#111;'> 11.55KB </span>","children":null,"spread":false},{"title":"densenet_table.png <span style='color:#111;'> 91.70KB </span>","children":null,"spread":false},{"title":"BasicBlock.png <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false},{"title":"Dense_bottleneck.png <span style='color:#111;'> 40.03KB </span>","children":null,"spread":false},{"title":"DenseNet_Explained.png <span style='color:#111;'> 177.39KB </span>","children":null,"spread":false},{"title":"GooLeNet2.png <span style='color:#111;'> 49.48KB </span>","children":null,"spread":false},{"title":"Inceptionv2.png <span style='color:#111;'> 65.08KB </span>","children":null,"spread":false},{"title":"gooLenet.png <span style='color:#111;'> 95.34KB </span>","children":null,"spread":false},{"title":"AlexNet.png <span style='color:#111;'> 638.27KB </span>","children":null,"spread":false},{"title":"dense1.png <span style='color:#111;'> 49.35KB </span>","children":null,"spread":false},{"title":"ResNet-34.png <span style='color:#111;'> 227.65KB </span>","children":null,"spread":false},{"title":"Original-ResNet-18-Architecture.png <span style='color:#111;'> 43.91KB </span>","children":null,"spread":false},{"title":"dense3.png <span style='color:#111;'> 164.44KB </span>","children":null,"spread":false},{"title":"Inception3.png <span style='color:#111;'> 53.56KB </span>","children":null,"spread":false},{"title":"residual.png <span style='color:#111;'> 94.99KB </span>","children":null,"spread":false},{"title":"Inception.png <span style='color:#111;'> 41.99KB </span>","children":null,"spread":false},{"title":"Residual3.png <span style='color:#111;'> 16.97KB </span>","children":null,"spread":false},{"title":"vgg19.png <span style='color:#111;'> 143.71KB </span>","children":null,"spread":false},{"title":"Inception2.png <span style='color:#111;'> 39.64KB </span>","children":null,"spread":false},{"title":"dense2.png <span style='color:#111;'> 92.80KB </span>","children":null,"spread":false},{"title":"densenet.gif <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false}],"spread":false},{"title":"Pytorch CIFAR10图像分类 自定义网络篇.md <span style='color:#111;'> 21.22KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 VGG篇.md <span style='color:#111;'> 30.55KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 DenseNet篇.md <span style='color:#111;'> 85.00KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 AlexNet篇.md <span style='color:#111;'> 23.73KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 GoogLeNet篇.md <span style='color:#111;'> 65.62KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR10图像分类 LeNet篇.md <span style='color:#111;'> 21.15KB </span>","children":null,"spread":false}],"spread":false},{"title":"requirements.txt <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"CIFAR10_code","children":[{"title":"Pytorch CIFAR-10分类(LeNet5).ipynb <span style='color:#111;'> 937.44KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 21.62KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"README.md <span style='color:#111;'> 215B </span>","children":null,"spread":false}],"spread":true},{"title":"Pytorch CIFAR-10分类(VGG16).ipynb <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(DenseNet).ipynb <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(AlexNet).ipynb <span style='color:#111;'> 937.62KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(DenseNet)Improve.ipynb <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"airplane.jpg <span style='color:#111;'> 6.21KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(ResNet34).ipynb <span style='color:#111;'> 950.70KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(GoogLeNet).ipynb <span style='color:#111;'> 999.22KB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(DenseNet)Improve2.ipynb <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"Pytorch CIFAR-10分类(自定义网络).ipynb <span style='color:#111;'> 945.37KB </span>","children":null,"spread":false}],"spread":false},{"title":"TransferLearning","children":[{"title":"Transfer_models.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"Transfer_Learning.ipynb <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明