Fracking Sarcasm using Neural Network
2021-08-04 15:05:23 464KB 神经网络
神经网络python书,非常好的可以上手的入门介绍性书籍,英文非扫描高清文字版,其他资源有的50分,太黑了。
2021-08-03 21:36:06 7.86MB neural netwo python AI
1
三个 bound 不如一个 heuristic,三个 heuristic 不如一个trick
2021-08-03 01:13:17 11.68MB 2012年第二版
1
NAS 的目标是找到一个合适的神经网络结构,用于在某个或者某类任务上有更好的泛化性能。如下图所示,这篇文章使用了一个 RNN 的控制器,用该控制器采样得到某一个神经网络结构 A,在该神经网络结构下训练数据并且得到相应的验证集上的准确率 R,使用该准确率来表征本次搜索得到的神经网络结构的好坏,进而将此作为信号来训练 RNN 控制器。
2021-08-02 10:33:09 81KB NAS
1
Artificial Intelligence for Humans, Volume 1_Fundamental Algorithms-Heaton Research(2013) Artificial Intelligence for Humans, Volume 2_Nature-Inspired Algorithms-Heaton Research(2014) Artificial Intelligence for Humans, Volume 3_Deep Learning and Neural Networks-Heaton Research(2015)
2021-07-28 20:16:52 15.69MB Deep Learning Neural
1
具有时间编码的监督学习的目的是使神经元尖峰化,以使神经元响应给定的突触输入而发出任意的尖峰序列。 近年来,基于突触可塑性的监督学习算法发展Swift。 作为最有效的监督学习算法之一,远程监督方法(ReSuMe)使用常规的基于对的峰值定时依赖的可塑性规则,该规则取决于突触前和突触后峰值的精确定时。 在本文中,使用了基于三重态的依赖于尖峰时序的可塑性,它是一种强大的突触可塑性规则,其作用超出了经典规则,提出了一种新颖的监督学习算法,称为T-ReSuMe,以提高ReSuMe的性能。 所提出的算法已成功应用于各种尖峰序列的学习任务,其中所需的尖峰序列通过泊松过程进行​​编码。 实验结果表明,与传统的ReSuMe算法相比,T-ReSuMe算法具有更高的学习精度和更少的迭代次数,对于解决复杂的时空模式学习问题是有效的。
2021-07-27 22:43:31 294KB Spiking neural networks; Supervised
1
社区缺乏标准化的基准和度量标准。这一缺陷非常严重,以至于很难对修剪技术进行比较,也很难确定这一领域在过去三十年中取得了多大的进步。为了解决这种情况,我们确定了当前实践中的问题,提出了具体的补救措施,并引入了ShrinkBench,这是一个开源框架,用于促进修剪方法的标准化评估。我们使用收缩台对各种修剪技术进行了比较,结果表明,它的综合评价可以防止在比较修剪方法时常见的缺陷。
2021-07-24 10:48:40 763KB NNP
1
Feedforward Backpropagation Neural Networks(BP神经网络的Matlab程序),可通过运行test_example_NN.m实现对手写数字的训练学习
2021-07-20 14:29:14 12KB BP NN 神经网络 matlab
1
张量流和pytorch中的变体自动编码器 TensorFlow和PyTorch中可变自动编码器的参考实现。 我建议使用PyTorch版本。 它包括一个更具表达性的变分族的例子,。 变分推断用于使模型适合二值化MNIST手写数字图像。 推理网络(编码器)用于分摊推理并在数据点之间共享参数。 可能性通过生成网络(解码器)进行参数化。 博客文章: : 具有重要性采样的示例输出,用于估计Hugo Larochelle的Binary MNIST数据集上的边际可能性。 测试集为-97.10边缘可能性。 $ python train_variational_autoencoder_pytor
1
神经网络与深度学习最好的入门书籍,比较适合初学者,但需要有一定的英文阅读能力
2021-07-18 23:19:50 9.23MB Neural Network deeplearning
1