基于三重态的基于时序的可塑性的改进的监督学习算法

上传者: 38569569 | 上传时间: 2021-07-27 22:43:31 | 文件大小: 294KB | 文件类型: PDF
具有时间编码的监督学习的目的是使神经元尖峰化,以使神经元响应给定的突触输入而发出任意的尖峰序列。 近年来,基于突触可塑性的监督学习算法发展Swift。 作为最有效的监督学习算法之一,远程监督方法(ReSuMe)使用常规的基于对的峰值定时依赖的可塑性规则,该规则取决于突触前和突触后峰值的精确定时。 在本文中,使用了基于三重态的依赖于尖峰时序的可塑性,它是一种强大的突触可塑性规则,其作用超出了经典规则,提出了一种新颖的监督学习算法,称为T-ReSuMe,以提高ReSuMe的性能。 所提出的算法已成功应用于各种尖峰序列的学习任务,其中所需的尖峰序列通过泊松过程进行​​编码。 实验结果表明,与传统的ReSuMe算法相比,T-ReSuMe算法具有更高的学习精度和更少的迭代次数,对于解决复杂的时空模式学习问题是有效的。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明