forestError:随机森林预测误差估计的统一框架 1.0.0版更新 该软件包已更新,以反映偏差的常规征兆(平均预测减去平均响应)。 该软件包的早期版本返回负偏差(平均响应减去均值预测)。 因此,必须颠倒涉及此程序包输出的任何偏差的代数运算的符号,以保持其预期的效果。 概述 forestError软件包使用Lu和Hardin(2021)中引入的插件方法为随机森林预测估算条件均方预测误差,条件偏差,条件预测间隔和条件误差分布。 这些估计值取决于测试观测值的预测值,并考虑可能的响应异质性,随机森林预测偏差以及整个预测器空间中的随机森林预测变异性。 在当前状态下,此程序包中的main函数接受使用以下任何程序包构建的回归随机森林: randomForest , randomForestSRC , ranger ,和 quantregForest 。 安装 在R运行以下代码行将从CRAN
2022-10-29 10:33:56 93KB machine-learning r statistics random-forest
1
从国家数据预测每年的 CO2 排放量 机器学习项目 弗拉迪斯拉夫·托多罗夫 自述文件 内容: 项目介绍 背景和目标 项目结构 内置 所有项目阶段的总结 如何打开 数据集信息 许可证信息 一、项目说明 背景和目标 预测机器学习 (ML) 模型和大量可用数据对于分析气候变化趋势或相关贡献者的发展非常有用。 理论上,国家一年内二氧化碳等温室气体排放量可能取决于特定国家的某些方面。 在此背景下,我开发了一个 ML 项目,旨在分析和预测来自国家特定参数(如经济指标、人口、能源使用、土地使用等)的二氧化碳排放量。 为此,我使用了世界银行集团提供的公开数据集,其中包括以下参数: 国家:全球绝大多数国家 年份:从 1990 年到 2011 年 温室气体排放,如 CO2、CH4、N2O 等 特定于人口的参数:人口计数,城市人口,人口增长等 国家经济指标:GDP、GNI、外商直接投资等。 与土地相关的
1
如果您想使用Tensorflow ,不用担心,我像PyTorch一样制作了一个新的Tensorflow教程。 这是链接: : pyTorch教程 在pyTorch的这些教程中,我们将构建我们的第一个神经网络,并尝试构建一些近年来开发的高级神经网络架构。 感谢,它对本教程。 pyTorch基本 建立您的第一个网络 先进的神经网络 / 其他(在制品) 对于说中文的人:下面提到的所有方法都有其中文视频和文字教程。 请访问 。 您也可以观看我的。 捐款 如果这样做对您有帮助,请考虑捐赠以支持我以获得更好的教程。 任何贡献都将不胜感激!
1
自然语言处理的文本预处理 用于自然语言处理中的文本预处理任务的python软件包。 用法 要使用这个文本预处理包,首先使用 pip 安装它: pip install text-preprocessing 然后,在您的 python 脚本中导入包并调用适当的函数: from text_preprocessing import preprocess_text from text_preprocessing import to_lower , remove_email , remove_url , remove_punctuation , lemmatize_word # Preprocess text using default preprocess functions in the pipeline text_to_process = 'Helllo, I am John Doe
1
纸与基于DL的无线通信代码:无线与深度学习结合的论文代码整理
1
动手学深度学习(D2L深度学习) | 理解深度学习的最佳方法是学以致用。 本开源项目代表了我们的一种尝试:我们将教给读者概念,背景知识和代码;我们将在同一个地方分解剖析问题所需的批判性思维,解决问题所需的数学知识,以及实现解决方案所需的工程技能。 我们的目标是创造一个为实现以下目标的统一资源: 所有人在网上免费获取; 提供足够的技术深度,从而帮助读者实际成为深度学习应用科学家:既理解数学原理,又能够实现并不断改进方法; 包括可运行的代码,为读者展示如何在实际中解决问题。这样直接直接将数学公式对应成实际代码,而且可以修改代码,观察结果并及时获取经验; 允许我们和整个社区不断快速迭代内容,从而紧跟仍在高速发展的深度学习领域; 由包含有关技术细节问答的论坛作为补充,使大家可以相互相互答疑并交换经验。 将本书(中英文版)利用教材或参考书的大学 如果本书对你有帮助,请星级(★)本仓库或引用本书英文版: @book{zhang2020dive, title={Dive into Deep Learning}, author={Aston Zhang and Zachary C.
1
bishop 的经典之作,学机器学习的首先,贝叶斯观点来解读模型
2022-10-25 23:05:15 5.4MB pattern_recognition machine_learning
1
multidimensional particle swarm optimization for machine learning and pattern recognition
2022-10-25 23:02:29 18.48MB machine lear
1
This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
2022-10-25 17:27:32 7.17MB Python Probability Statistics Machine
1
榆木分类器在线词典学习 这是在线稀疏字典学习和时间金字塔匹配的官方Matlab实现[“李南宇,司玉娟,邓铎,袁春雨ECG通过在线稀疏字典和时间金字塔匹配进行分类”,在IEEE第17届国际通信技术大会上(ICCT)]可以从中下载 兼容性 该代码使用Windows 10和Matlab 2012进行了测试。 抽象的 最近,单词袋(BOW)算法提供了有效的功能并提高了ECG分类系统的准确性。 但是,BOW算法有两个缺点:(1)。 量化误差大,重建性能差。 (2)。 它会丢失心跳的时间信息,并可能为不同类型的心跳提供令人困惑的功能。 此外,ECG分类系统可用于对心血管患者进行长时间监视和分析,同时会产生大量数据,因此我们迫切需要一种有效的压缩算法。 鉴于上述问题,我们使用小波特征构造稀疏字典,从而将量化误差降至最低。 为了降低算法的复杂性并适应大规模的心跳操作,我们将在线词典学习与特征符号算法结合起来以更新词典和系数。 系数矩阵用于表示心电图搏动,大大减少了内存消耗,同时解决了定量误差的问题。 最后,我们构造金字塔以匹配每个ECG搏动的系数。 因此,我们通过时间随机池获得包含节拍时间信息的特征。
2022-10-24 19:07:50 155KB 系统开源
1